A higher-than-predicted measurement of iron opacity at solar interior temperatures

被引:376
作者
Bailey, J. E. [1 ]
Nagayama, T. [1 ]
Loisel, G. P. [1 ]
Rochau, G. A. [1 ]
Blancard, C. [2 ]
Colgan, J. [3 ]
Cosse, Ph. [2 ]
Faussurier, G. [2 ]
Fontes, C. J. [3 ]
Gilleron, F. [2 ]
Golovkin, I. [4 ]
Hansen, S. B. [1 ]
Iglesias, C. A. [5 ]
Kilcrease, D. P. [3 ]
MacFarlane, J. J. [4 ]
Mancini, R. C. [6 ]
Nahar, S. N. [7 ]
Orban, C. [7 ]
Pain, J-C. [2 ]
Pradhan, A. K. [7 ]
Sherrill, M. [3 ]
Wilson, B. G. [5 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Commissariat Energie Atom CEA & Energie Alternat, F-91297 Arpajon, France
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Prism Computat Sci, Madison, WI 53711 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[6] Univ Nevada, Reno, NV 89557 USA
[7] Ohio State Univ, Columbus, OH 43210 USA
基金
美国国家科学基金会; 美国能源部;
关键词
DETAILED CONFIGURATION; PHOTOABSORPTION; RADIATION; MODELS; FILMS; ABUNDANCES; PLASMA; REGION; HOT; CR;
D O I
10.1038/nature14048
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nearly a century ago it was recognized(1) that radiation absorption by stellar matter controls the internal temperature profiles within stars. Laboratory opacity measurements, however, have never been performed at stellar interior conditions, introducing uncertainties in stellar models(2-5). A particular problem arose(2,3,6-8) when refined photosphere spectral analysis(9,10) led to reductions of 30-50 per cent in the inferred amounts of carbon, nitrogen and oxygen in the Sun. Standard solar models(11) using the revised element abundances disagree with helioseismic observations that determine the internal solar structure using acoustic oscillations. This could be resolved if the true mean opacity for the solar interior matter were roughly 15 per cent higher than predicted(2,3,6-8), because increased opacity compensates for the decreased element abundances. Iron accounts for a quarter of the total opacity(2,12) at the solar radiation/convection zone boundary. Here we report measurements of wavelength-resolved iron opacity at electron temperatures of 1.9-2.3 million kelvin and electron densities of (0.7-4.0) x 10(22) per cubic centimetre, conditions very similar to those in the solar region that affects the discrepancy the most: the radiation/convection zone boundary. The measured wavelength-dependent opacity is 30-400 per cent higher than predicted. This represents roughly half the change in the mean opacity needed to resolve the solar discrepancy, even though iron is only one of many elements that contribute to opacity.
引用
收藏
页码:56 / U120
页数:12
相关论文
共 41 条
[1]   The Chemical Composition of the Sun [J].
Asplund, Martin ;
Grevesse, Nicolas ;
Sauval, A. Jacques ;
Scott, Pat .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 47, 2009, 47 :481-522
[2]   Updated opacities from the opacity project [J].
Badnell, NR ;
Bautista, MA ;
Butler, K ;
Delahaye, F ;
Mendoza, C ;
Palmeri, P ;
Zeippen, CJ ;
Seaton, MJ .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 360 (02) :458-464
[3]   STANDARD SOLAR MODELS AND THE UNCERTAINTIES IN PREDICTED CAPTURE RATES OF SOLAR NEUTRINOS [J].
BAHCALL, JN ;
HUEBNER, WF ;
LUBOW, SH ;
PARKER, PD ;
ULRICH, RK .
REVIEWS OF MODERN PHYSICS, 1982, 54 (03) :767-800
[4]   How accurately can we calculate the depth of the solar convective zone? [J].
Bahcall, JN ;
Serenelli, AM ;
Pinsonneault, M .
ASTROPHYSICAL JOURNAL, 2004, 614 (01) :464-471
[5]   Dynamic hohlraum radiation hydrodynamics [J].
Bailey, J. E. ;
Chandler, G. A. ;
Mancini, R. C. ;
Slutz, S. A. ;
Rochau, G. A. ;
Bump, M. ;
Buris-Mog, T. J. ;
Cooper, G. ;
Dunham, G. ;
Golovkin, I. ;
Kilkenny, J. D. ;
Lake, P. W. ;
Leeper, R. J. ;
Lemke, R. ;
MacFarlane, J. J. ;
Mehlhorn, T. A. ;
Moore, T. C. ;
Nash, T. J. ;
Nikroo, A. ;
Nielsen, D. S. ;
Peterson, K. L. ;
Ruiz, C. L. ;
Schroen, D. G. ;
Steinman, D. ;
Varnum, W. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[6]   Diagnosis of x-ray heated Mg/Fe opacity research plasmas [J].
Bailey, J. E. ;
Rochau, G. A. ;
Mancini, R. C. ;
Iglesias, C. A. ;
MacFarlane, J. J. ;
Golovkin, I. E. ;
Pain, J. C. ;
Gilleron, F. ;
Blancard, C. ;
Cosse, Ph. ;
Faussurier, G. ;
Chandler, G. A. ;
Nash, T. J. ;
Nielsen, D. S. ;
Lake, P. W. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (11)
[7]   Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas [J].
Bailey, J. E. ;
Rochau, G. A. ;
Mancini, R. C. ;
Iglesias, C. A. ;
MacFarlane, J. J. ;
Golovkin, I. E. ;
Blancard, C. ;
Cosse, Ph. ;
Faussurier, G. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[8]   Iron-plasma transmission measurements at temperatures above 150 eV [J].
Bailey, J. E. ;
Rochau, G. A. ;
Iglesias, C. A. ;
Abdallah, J., Jr. ;
MacFarlane, J. J. ;
Golovkin, I. ;
Wang, P. ;
Mancini, R. C. ;
Lake, P. W. ;
Moore, T. C. ;
Bump, M. ;
Garcia, O. ;
Mazevet, S. .
PHYSICAL REVIEW LETTERS, 2007, 99 (26)
[9]  
Basu S., 2014, SPACE SCI REV
[10]   Helioseismology and solar abundances [J].
Basu, Sarbani ;
Antia, H. M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 457 (5-6) :217-283