Properties of electropolymerised polyaniline thin films obtained from different supporting electrolytes

被引:4
作者
Hamza, D. E. [1 ]
Lahmar, H. [1 ]
Azizi, A. [1 ]
Schmerber, G. [2 ]
Dinia, A. [2 ]
机构
[1] Univ Ferhat Abbas Setif 1, Fac Sci, Dept Chim, Lab Chim Ingn Mol & Nanostruct, Setif 19000, Algeria
[2] Univ Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
来源
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING | 2017年 / 95卷 / 05期
关键词
Polyaniline; Photocurrent density; Electropolymerisation; Morphology; Protonic acids; POLYMERIZATION; STEEL; ELECTRODEPOSITION; FABRICATION;
D O I
10.1080/00202967.2017.1327258
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work reports on the properties of polyaniline (PANI) films electrochemically synthesised onto indium tin oxide (ITO) coated glass substrate from a mixed solution of 0.1 M aniline with three different types of supporting electrolytes: HNO3, H2SO4 and H3PO4. In order to investigate the effect of dopant on the behaviour of polyaniline different techniques have been employed. These characterisations were made using photoelectrochemical, FTIR and Raman spectroscopies, field-emission scanning electron microscopy, UV-vis spectroscopy, diffuse reflectance spectrophotometry and photoluminescence techniques. The potocurent transients show a change of PANI films conductivity from p-type to n-type by changing the supporting electrolytes. The FTIR technique and Raman spectroscopy confirmed the formation of PANI thin film on ITO substrates. The morphology of the electropolymerised PANI thin films is closely related to the supporting electrolytes. Compact and spongy morphologies were observed for PANI films deposited in different supporting electrolytes. The optical measurements show an optical transmittance in the visible region, with variations depending on the nature of electrolytes.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 32 条
[1]   Graphene/Polyaniline Nanocomposite for Hydrogen Sensing [J].
Al-Mashat, Laith ;
Shin, Koo ;
Kalantar-zadeh, Kourosh ;
Plessis, Johan D. ;
Han, Seung H. ;
Kojima, Robert W. ;
Kaner, Richard B. ;
Li, Dan ;
Gou, Xinglong ;
Ippolito, Samuel J. ;
Wlodarski, Wojtek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16168-16173
[2]   Polyaniline: Synthesis, Properties, and Application [J].
Boeva, Zh. A. ;
Sergeyev, V. G. .
POLYMER SCIENCE SERIES C, 2014, 56 (01) :144-153
[3]  
Cochet M, 2000, J RAMAN SPECTROSC, V31, P1041, DOI 10.1002/1097-4555(200012)31:12<1041::AID-JRS641>3.0.CO
[4]  
2-R
[5]   Electrosynthesis and characterization of polymer films on silicon substrates for applications in micromanipulation [J].
Cot, A. ;
Lakard, S. ;
Dejeu, J. ;
Rougeot, P. ;
Magnenet, C. ;
Lakard, B. ;
Gauthier, M. .
SYNTHETIC METALS, 2012, 162 (24) :2370-2378
[6]   Synthesis of polyaniline films by plasma polymerization [J].
Cruz, GJ ;
Morales, J ;
CastilloOrtega, MM ;
Olayo, R .
SYNTHETIC METALS, 1997, 88 (03) :213-218
[7]  
Gomes C., 2012, American Journal of Polymer Science, V2, P5, DOI DOI 10.5923/J.AJPS.20120202.02
[8]   Synthesis of liquid crystalline polyaniline derivatives and their orientational behaviors under magnetic field [J].
Goto, H ;
Akagi, K ;
Itoh, K .
SYNTHETIC METALS, 2001, 117 (1-3) :91-93
[9]   Exchange of counter anions in electropolymerized polyaniline films [J].
Hao, Qingli ;
Lei, Wu ;
Xia, Xifeng ;
Yan, Zhenzhen ;
Yang, Xujie ;
Lu, Lude ;
Wang, Xin .
ELECTROCHIMICA ACTA, 2010, 55 (03) :632-640
[10]  
Hassan HK, 2012, INT J ELECTROCHEM SC, V7, P11161