Structural design of a eukaryotic DNA repair polymerase:: DNA polymerase β

被引:130
作者
Beard, WA [1 ]
Wilson, SH [1 ]
机构
[1] NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA
来源
MUTATION RESEARCH-DNA REPAIR | 2000年 / 460卷 / 3-4期
关键词
base excision repair; DNA polymerase; lyase; gap-filling; fidelity; endogenous DNA damage;
D O I
10.1016/S0921-8777(00)00029-X
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
DNA polymerase beta, the smallest eukaryotic DNA polymerase, is designed to synthesize DNA in short DNA gaps during DNA repair. It is composed of two specialized domains that contribute essential enzymatic activities to base excision repair (BER). Its amino-terminal domain possesses a lyase activity necessary to remove the 5'-deoxyribose phosphate (dRP) intermediate generated during BER. Removal of the dRP moiety is often the rate-limiting step during BER. Failure to remove this group may initiate alternate BER pathways. The larger polymerase domain has nucleotidyl transferase activity. This domain has a modular organization with sub-domains that bind duplex DNA, catalytic metals, and the correct nucleoside triphosphate in a template-dependent manner. X-ray crystal structures of DNA polymerase beta, with and without bound substrates, has inferred that domain, sub-domain, and substrate conformational changes occur upon ligand binding. Many of these conformational changes are distinct from those observed in structures of other DNA polymerases. This review will examine the structural aspects of DNA polymerase beta that facilitate its role in BER. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 91 条
[1]   DNA polymerase beta: Structure-fidelity relationship from pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant [J].
Ahn, J ;
Werneburg, BG ;
Tsai, MD .
BIOCHEMISTRY, 1997, 36 (05) :1100-1107
[2]   ACTIVE-SITE MODIFICATION OF MAMMALIAN DNA POLYMERASE-BETA WITH PYRIDOXAL 5'-PHOSPHATE - MECHANISM OF INHIBITION AND IDENTIFICATION OF LYSINE-71 IN THE DEOXYNUCLEOSIDE TRIPHOSPHATE BINDING POCKET [J].
BASU, A ;
KEDAR, P ;
WILSON, SH ;
MODAK, MJ .
BIOCHEMISTRY, 1989, 28 (15) :6305-6309
[3]   Enzyme-DNA interactions required for efficient nucleotide incorporation and discrimination in human DNA polymerase beta [J].
Beard, WA ;
Osheroff, WP ;
Prasad, R ;
Sawaya, MR ;
Jaju, M ;
Wood, TG ;
Kraut, J ;
Kunkel, TA ;
Wilson, SH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (21) :12141-12144
[4]  
Beard WA, 1995, METHOD ENZYMOL, V262, P98
[5]   Structural insights into DNA polymerase β fidelity:: hold tight if you want it right [J].
Beard, WA ;
Wilson, SH .
CHEMISTRY & BIOLOGY, 1998, 5 (01) :R7-R13
[6]   Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway [J].
Bennett, RAO ;
Wilson, DM ;
Wong, D ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7166-7169
[7]   Delayed DNA joining at 3′ mismatches by human DNA ligases [J].
Bhagwat, AS ;
Sanderson, RJ ;
Lindahl, T .
NUCLEIC ACIDS RESEARCH, 1999, 27 (20) :4028-4033
[8]   Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA [J].
Biade, S ;
Sobol, RW ;
Wilson, SH ;
Matsumoto, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (02) :898-902
[9]   Eukaryotic DNA polymerases in DNA replication and DNA repair [J].
Burgers, PMJ .
CHROMOSOMA, 1998, 107 (04) :218-227
[10]   XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro [J].
Caldecott, KW ;
Aoufouchi, S ;
Johnson, P ;
Shall, S .
NUCLEIC ACIDS RESEARCH, 1996, 24 (22) :4387-4394