Root Development of Transplanted Cotton and Simulation of Soil Water Movement under Different Irrigation Methods

被引:6
|
作者
Zhang, Hao [1 ,2 ]
Liu, Hao [1 ]
Sun, Chitao [1 ,2 ]
Gao, Yang [1 ]
Gong, Xuewen [1 ,2 ]
Sun, Jingsheng [1 ]
Wang, Wanning [1 ,2 ]
机构
[1] Chinese Acad Agr Sci, Key Lab Crop Water Use & Regulat, Minist Agr, Farmland Irrigat Res Inst, Xinxiang 453000, Henan, Peoples R China
[2] Chinese Acad Agr Sci, Grad Sch, Beijing 100081, Peoples R China
关键词
deformed root; soil water content; HYDRUS-2D; border irrigation; surface drip irrigation; DEFICIT IRRIGATION; DRIP IRRIGATION; USE EFFICIENCY; GROWTH; YIELD; DYNAMICS; SYSTEM; MAIZE; QUALITY; MODEL;
D O I
10.3390/w9070503
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Winter wheat and cotton are the main crops grown on the North China Plain (NCP). Cotton is often transplanted after the winter wheat harvest to solve the competition for cultivated land between winter wheat and cotton, and to ensure that both crops can be harvested on the NCP. However, the root system of transplanted cotton is distorted due to the restrictions of the seedling aperture disk before transplanting. Therefore, the investigation of the deformed root distribution and water uptake in transplanted cotton is essential for simulating soil water movement under different irrigation methods. Thus, a field experiment and a simulation study were conducted during 2013-2015 to explore the deformed roots of transplanted cotton and soil water movement using border irrigation (BI) and surface drip irrigation (SDI). The results showed that SDI was conducive to root growth in the shallow root zone (0-30 cm), and that BI was conducive to root growth in the deeper root zone (below 30 cm). SDI is well suited for producing the optimal soil water distribution pattern for the deformed root system of transplanted cotton, and the root system was more developed under SDI than under BI. Comparisons between experimental data and model simulations showed that the HYDRUS-2D model described the soil water content (SWC) under different irrigation methods well, with root mean square errors (RMSEs) of 0.023 and 0.029 cm(3) cm(-3) and model efficiencies (EFs) of 0.68 and 0.59 for BI and SDI, respectively. Our findings will be very useful for designing an optimal irrigation plan for BI and SDI in transplanted cotton fields, and for promoting the wider use of this planting pattern for cotton transplantation.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Modeling of Soil Water Regime and Water Balance in a Transplanted Rice Field Experiment with Reduced Irrigation
    Li, Yong
    Simunek, Jirka
    Wang, Shuang
    Yuan, Jiahui
    Zhang, Weiwei
    WATER, 2017, 9 (04) : 248
  • [22] Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method
    Wang, Lichun
    Ning, Songrui
    Chen, Xiaoli
    Li, Youli
    Guo, Wenzhong
    Ben-Gal, Alon
    AGRICULTURAL WATER MANAGEMENT, 2021, 255
  • [23] Optimizing irrigation strategies to improve the soil microenvironment and enhance cotton water productivity under deep drip irrigation
    Li, Nannan
    Shi, Xiaojuan
    Zhang, Humei
    Shi, Feng
    Zhang, Hongxia
    Liang, Qi
    Hao, Xianzhe
    Luo, Honghai
    Wang, Jun
    AGRICULTURAL WATER MANAGEMENT, 2024, 305
  • [24] Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model
    Li, Meng
    Du, Yingji
    Zhang, Fucang
    Bai, Yungang
    Fan, Junliang
    Zhang, Jianghui
    Chen, Shaoming
    AGRICULTURAL WATER MANAGEMENT, 2019, 218 : 124 - 138
  • [25] Effects of Soil Water Content on Cotton Root Growth and Distribution Under Mulched Drip Irrigation
    Hu Xiao-tang
    Chen Hu
    Wang Jing
    Meng Xiao-bin
    Chen Fu-hong
    AGRICULTURAL SCIENCES IN CHINA, 2009, 8 (06): : 709 - 716
  • [27] Effects of brackish water irrigation on the physiological characteristics, yield and quality of mulched drip irrigation cotton under different soil textures
    Wang Z.
    Wang F.
    Lyu D.
    Liu J.
    Zhu Y.
    Wen Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (24): : 69 - 78
  • [28] AquaCrop model simulation under different irrigation water and nitrogen strategies
    Khoshravesh, Mojtaba
    Mostafazadeh-Fard, Behrouz
    Heidarpour, Manouchehr
    Kiani, Ali-Reza
    WATER SCIENCE AND TECHNOLOGY, 2013, 67 (01) : 232 - 238
  • [29] Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree
    Nazari, Ehsan
    Besharat, Sina
    Zeinalzadeh, Kamran
    Mohammadi, Adel
    AGRICULTURAL WATER MANAGEMENT, 2021, 255
  • [30] Numerical simulation of soil water movement by gravity subsurface hole irrigation
    Fan, Yanwei
    Zhu, Chunyan
    Bai, Guilin
    Ma, Tianhua
    Wang, Zhenchang
    WATER SUPPLY, 2022, 22 (07) : 6389 - 6404