On the theory of Besov-Herz spaces and Euler equations

被引:2
作者
Ferreira, Lucas C. F. [1 ]
Perez-Lopez, J. E. [1 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Matemat, Rua Sergio Buargue Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
BLOW-UP CRITERION; WELL-POSEDNESS; LOCAL EXISTENCE; SOBOLEV; FLUID; REGULARITY; VORTICITY; PARTICLES; OPERATORS;
D O I
10.1007/s11856-017-1519-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider Euler equations (E) for an incompressible ideal fluid filling the whole space a"e (n) for n ae<yen> 2. We prove local-in-time wellposedness and give a blow-up criterion for (E) in a new framework, namely Besov type spaces based on Herz spaces. Solutions are global-in-time when n = 2. Our results cover critical and supercritical cases of the regularity. For that, we develop properties and estimates in those spaces such as product and commutator-type estimates, interpolation, duality, among others. For the blow-up result, another ingredient is a logarithmic type inequality in our spaces.
引用
收藏
页码:283 / 332
页数:50
相关论文
共 46 条
  • [1] [Anonymous], 2002, CHAPMAN HALL CRC RES
  • [2] [Anonymous], 2010, GRADUATE STUDIES MAT
  • [3] [Anonymous], 1998, Perfect Incompressible Fluids
  • [4] REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS
    BEALE, JT
    KATO, T
    MAJDA, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) : 61 - 66
  • [5] Bernicot F, 2014, ANN SCI ECOLE NORM S, V47, P559
  • [6] BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
  • [7] Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces
    Bourgain, Jean
    Li, Dong
    [J]. INVENTIONES MATHEMATICAE, 2015, 201 (01) : 97 - 157
  • [8] BOURGUIGNON J. P., 1931, J. Funct. Anal., V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
  • [9] Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
  • [10] Brezis H., 1980, COMMUN PART DIFF EQ, V5, P773, DOI 10.1080/03605308008820154