In Vivo Deep Tissue Imaging via Iterative Multiphoton Adaptive Compensation Technique

被引:13
作者
Kong, Lingjie [1 ]
Cui, Meng [1 ,2 ,3 ,4 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
[3] Purdue Univ, Integrated Imaging Cluster, W Lafayette, IN 47907 USA
[4] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA
关键词
Adaptive optics; biophotonics; biomedical optical imaging; calcium imaging; fluorescence microscopy; multiphoton microscopy; neuron imaging; nonlinear optics; optical microscopy; WAVE-FRONT CORRECTION; FOCUSING LIGHT; ABERRATION CORRECTION; OPTICAL MICROSCOPY; FLUORESCENCE MICROSCOPY; PUPIL-SEGMENTATION; DIFFRACTION-LIMIT; RESOLUTION; OPTIMIZATION; DYNAMICS;
D O I
10.1109/JSTQE.2015.2509947
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiphoton microscopy has been widely adopted in biological studies for its advantages in deep tissue imaging at subcellular resolutions. However, aberration and scattering in the sample often lead to a distorted laser focus with reduced focus intensity, limiting the achievable resolution and penetration depth. Adaptive optics has been adopted in microscopy to correct wavefront distortions and recover the diffraction-limited focus. Here, we review the Iterative MultiPhoton Adaptive Compensation Technique (IMPACT) that can perform in vivo high-speed wavefront measurement and compensation at large depth. We describe the working principle of IMPACT, demonstrate its applications for in vivo deep tissue imaging, and discuss its advantages and aspects to be improved.
引用
收藏
页码:40 / 49
页数:10
相关论文
共 107 条
  • [1] Computational adaptive optics for broadband optical interferometric tomography of biological tissue
    Adie, Steven G.
    Graf, Benedikt W.
    Ahmad, Adeel
    Carney, P. Scott
    Boppart, Stephen A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (19) : 7175 - 7180
  • [2] Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy
    Albert, O
    Sherman, L
    Mourou, G
    Norris, TB
    Vdovin, G
    [J]. OPTICS LETTERS, 2000, 25 (01) : 52 - 54
  • [3] Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy
    Aviles-Espinosa, Rodrigo
    Andilla, Jordi
    Porcar-Guezenec, Rafael
    Olarte, Omar E.
    Nieto, Marta
    Levecq, Xavier
    Artigas, David
    Loza-Alvarez, Pablo
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (11): : 3135 - 3149
  • [4] Adaptive optics wide-field microscopy using direct wavefront sensing
    Azucena, Oscar
    Crest, Justin
    Kotadia, Shaila
    Sullivan, William
    Tao, Xiaodong
    Reinig, Marc
    Gavel, Donald
    Olivier, Scot
    Kubby, Joel
    [J]. OPTICS LETTERS, 2011, 36 (06) : 825 - 827
  • [5] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [6] Wavefront sensorless adaptive optics for large aberrations
    Booth, Martin J.
    [J]. OPTICS LETTERS, 2007, 32 (01) : 5 - 7
  • [7] Adaptive optical microscopy: the ongoing quest for a perfect image
    Booth, Martin J.
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2014, 3 : e165 - e165
  • [8] Adaptive aberration correction in a confocal microscope
    Booth, MJ
    Neil, MAA
    Juskaitis, R
    Wilson, T
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) : 5788 - 5792
  • [9] 3D adaptive optics in a light sheet microscope
    Bourgenot, Cyril
    Saunter, Christopher D.
    Taylor, Jonathan M.
    Girkin, John M.
    Love, Gordon D.
    [J]. OPTICS EXPRESS, 2012, 20 (12): : 13252 - 13261
  • [10] BOYE CA, 1983, P SOC PHOTO-OPT INST, V410, P161