A view on anisotropic finite hyper-elasticity

被引:27
作者
Menzel, A [1 ]
Steinmann, P [1 ]
机构
[1] Univ Kaiserslautern, D-67653 Kaiserslautern, Germany
关键词
anisotropy; structural tensors; large strains;
D O I
10.1016/S0997-7538(02)01253-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper presents a modular framework for the formulation of anisotropic hyper-elastic materials at large strains. Thereby, additional symmetric second order tensors are incorporated into the free Helmholtz energy density which allow, e.g., the interpretation as structural tensors. In order to prove the analogy between the material setting - usually based on the fight Cauchy-Green tensor - and the spatial formulation - typically in terms of the Finger tensor - the general representation theorem of isotropic tensor functions is applied. As a result, the spatial formats of the stress tensors and the tangent operators within the anisotropic hyper-elastic case are given, whereby a specific additive structure of contributions due to the Finger tensor and the additional symmetric tensors is obtained. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:71 / 87
页数:17
相关论文
共 13 条
[1]   Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues [J].
Almeida, ES ;
Spilker, RL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 151 (3-4) :513-538
[2]  
[Anonymous], 1983, MATH FDN ELASTICITY
[3]  
[Anonymous], 1987, APPL TENSOR FUNCTION
[4]   IRREDUCIBLE REPRESENTATIONS FOR ISOTROPIC SCALAR FUNCTIONS [J].
BOEHLER, JP .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (06) :323-327
[5]  
LODGE AS, 1974, BODY TENSOR FIELDS C
[6]   A covariant constitutive description of anisotropic non-linear elasticity [J].
Lu, J ;
Papadopoulos, P .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (02) :204-217
[7]   ASPECTS OF THE FORMULATION AND FINITE-ELEMENT IMPLEMENTATION OF LARGE-STRAIN ISOTROPIC ELASTICITY [J].
MIEHE, C .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (12) :1981-2004
[8]   Finite deformations of an elastic solid [J].
Murnaghan, FD .
AMERICAN JOURNAL OF MATHEMATICS, 1937, 59 :235-260
[9]  
Oden J.T., 1972, Finite Elements of Nonlinear Continua
[10]  
SILHAVY M, 1997, MECH THERMOMECHANICS