A Novel Fault Diagnosis Method for TE Process Based on Optimal Extreme Learning Machine
被引:5
作者:
Hu, Xinyi
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Qianhu Coll, Nanchang 330100, Jiangxi, Peoples R ChinaNanchang Univ, Qianhu Coll, Nanchang 330100, Jiangxi, Peoples R China
Hu, Xinyi
[1
]
Hu, Mingfei
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Qianhu Coll, Nanchang 330100, Jiangxi, Peoples R ChinaNanchang Univ, Qianhu Coll, Nanchang 330100, Jiangxi, Peoples R China
Hu, Mingfei
[1
]
Yang, Xiaohui
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Informat Engn Coll, Nanchang 330100, Jiangxi, Peoples R ChinaNanchang Univ, Qianhu Coll, Nanchang 330100, Jiangxi, Peoples R China
Yang, Xiaohui
[2
]
机构:
[1] Nanchang Univ, Qianhu Coll, Nanchang 330100, Jiangxi, Peoples R China
[2] Nanchang Univ, Informat Engn Coll, Nanchang 330100, Jiangxi, Peoples R China
来源:
APPLIED SCIENCES-BASEL
|
2022年
/
12卷
/
07期
关键词:
modified coyote optimization algorithm;
extreme learning machine;
deep learning;
chemical process;
fault diagnosis;
QUANTITATIVE MODEL;
FEATURE-SELECTION;
RANDOM FOREST;
IDENTIFICATION;
RECOGNITION;
ALGORITHM;
NETWORK;
SVM;
D O I:
10.3390/app12073388
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Chemical processes usually exhibit complex, high-dimensional and non-Gaussian characteristics, and the diagnosis of faults in chemical processes is particularly important. To address this problem, this paper proposes a novel fault diagnosis method based on the Bernoulli shift coyote optimization algorithm (BCOA) to optimize the kernel extreme learning machine classifier (KELM). Firstly, the random forest treebagger (RFtb) is used to select the features, and the data set is optimized. Secondly, a new optimization algorithm BCOA is proposed to automatically adjust the network hyperparameters of KELM and improve the classifier performance. Finally, the optimized feature sequence is input into the proposed classifier to obtain the final diagnosis results. The Tennessee Eastman (TE) chemical process have been collected and used to verify the effectiveness of the proposed method. A comprehensive comparison and analysis with widely used algorithms is also performed. The results demonstrate that the proposed method outperforms other methods in terms of classification accuracy. The average diagnosis rate of 21 faults is found to be 89.32%.
机构:
China Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R ChinaChina Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R China
Deng, Xiaogang
Tian, Xuemin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R ChinaChina Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R China
Tian, Xuemin
Chen, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
King Abdulaziz Univ, Jeddah 21589, Saudi ArabiaChina Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R China
Chen, Sheng
Harris, Chris J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, EnglandChina Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R China
机构:
Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China
Dong, Jie
Zhang, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China
Zhang, Kai
Huang, Ya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China
Huang, Ya
Li, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Chem Engn, Los Angeles, CA 90089 USA
Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USAUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China
Li, Gang
Peng, Kaixiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China
机构:
China Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R ChinaChina Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R China
Deng, Xiaogang
Tian, Xuemin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R ChinaChina Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R China
Tian, Xuemin
Chen, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
King Abdulaziz Univ, Jeddah 21589, Saudi ArabiaChina Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R China
Chen, Sheng
Harris, Chris J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, EnglandChina Univ Petr, Coll Informat & Control Engn, Dongying 266580, Peoples R China
机构:
Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China
Dong, Jie
Zhang, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China
Zhang, Kai
Huang, Ya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China
Huang, Ya
Li, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Dept Chem Engn, Los Angeles, CA 90089 USA
Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USAUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China
Li, Gang
Peng, Kaixiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Adv Control Iron & Steel Proc, Minist Educ, Beijing 100083, Peoples R China