The Lebesgue constants on projective spaces

被引:3
作者
Kushpel, Alexander [1 ]
机构
[1] Cankaya Univ, Fac Art & Sci, Dept Math, Ankara, Turkey
关键词
Lebesgue constant; Fourier-Laplace projection; Jacoby polynomial;
D O I
10.3906/mat-1910-111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give the solution of a classical problem of Approximation Theory on sharp asymptotic of the Lebesgue constants or norms of the Fourier-Laplace projections on the real projective spaces P-d (R). In particular, these results extend sharp asymptotic found by Fejer [2] in the case of S-1 in 1910 and by Gronwall [4] in 1914 in the case of S-2. The case of spheres, S-d, complex and quaternionic projective spaces, P-d(C), P-d(H) and the Cayley elliptic plane P-16 (Cay) was considered by Kushpel [8].
引用
收藏
页码:856 / 863
页数:8
相关论文
共 9 条
[1]  
[Anonymous], 1995, Epigenetic inheritance and evolution: the Lamarckian dimension
[2]  
[Anonymous], 1965, Acta Mathematica
[3]  
Cartan E., 1929, Rendiconti del Circolo Matematico di Palermo (1884-1940), V53, P217, DOI [DOI 10.1007/BF03024106, 10.1007/BF03024106]
[4]  
Fejer L, 1910, J REINE ANGEW MATH, V138, P22
[5]  
GANGOLLI R, 1967, ANN I H POINCARE B, V3, P121
[6]  
Gronwall TH, 1914, T AM MATH SOC, V15, P1
[7]   ADDITION FORMULA FOR JACOBI POLYNOMIALS AND SPHERICAL HARMONICS [J].
KOORNWINDER, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 25 (02) :236-246
[8]  
Kushpel A., 2019, UKR MATH J+, V71, P1073
[9]  
Szeg Gabor, 1939, Orthogonal polynomials, V23