Precise atom manipulation through deep reinforcement learning

被引:38
作者
Chen, I-Ju [1 ]
Aapro, Markus [1 ]
Kipnis, Abraham [1 ]
Ilin, Alexander [2 ]
Liljeroth, Peter [1 ]
Foster, Adam S. [1 ,3 ]
机构
[1] Aalto Univ, Dept Appl Phys, Espoo, Finland
[2] Aalto Univ, Dept Comp Sci, Espoo, Finland
[3] Kanazawa Univ, Nano Life Sci Inst WPI NanoLSI, Kanazawa 9201192, Japan
基金
芬兰科学院; 欧洲研究理事会;
关键词
D O I
10.1038/s41467-022-35149-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Engineering quantum states requires precise manipulations at the atomic level. Here, the authors use deep reinforcement learning to manipulate Ag adatoms on Ag surfaces, which combined with path planning algorithms enables autonomous atomic assembly. Atomic-scale manipulation in scanning tunneling microscopy has enabled the creation of quantum states of matter based on artificial structures and extreme miniaturization of computational circuitry based on individual atoms. The ability to autonomously arrange atomic structures with precision will enable the scaling up of nanoscale fabrication and expand the range of artificial structures hosting exotic quantum states. However, the a priori unknown manipulation parameters, the possibility of spontaneous tip apex changes, and the difficulty of modeling tip-atom interactions make it challenging to select manipulation parameters that can achieve atomic precision throughout extended operations. Here we use deep reinforcement learning (DRL) to control the real-world atom manipulation process. Several state-of-the-art reinforcement learning (RL) techniques are used jointly to boost data efficiency. The DRL agent learns to manipulate Ag adatoms on Ag(111) surfaces with optimal precision and is integrated with path planning algorithms to complete an autonomous atomic assembly system. The results demonstrate that state-of-the-art DRL can offer effective solutions to real-world challenges in nanofabrication and powerful approaches to increasingly complex scientific experiments at the atomic scale.
引用
收藏
页数:8
相关论文
共 58 条
[1]   Lithography for robust and editable atomic-scale silicon devices and memories [J].
Achal, Roshan ;
Rashidi, Mohammad ;
Croshaw, Jeremiah ;
Churchill, David ;
Taucer, Marco ;
Huff, Taleana ;
Cloutier, Martin ;
Pitters, Jason ;
Wolkow, Robert A. .
NATURE COMMUNICATIONS, 2018, 9
[2]   Learning dexterous in-hand manipulation [J].
Andrychowicz, Marcin ;
Baker, Bowen ;
Chociej, Maciek ;
Jozefowicz, Rafal ;
McGrew, Bob ;
Pachocki, Jakub ;
Petron, Arthur ;
Plappert, Matthias ;
Powell, Glenn ;
Ray, Alex ;
Schneider, Jonas ;
Sidor, Szymon ;
Tobin, Josh ;
Welinder, Peter ;
Weng, Lilian ;
Zaremba, Wojciech .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (01) :3-20
[3]  
Andrychowicz Marcin, 2017, arXiv
[4]   Autonomous navigation of stratospheric balloons using reinforcement learning [J].
Bellemare, Marc G. ;
Candido, Salvatore ;
Castro, Pablo Samuel ;
Gong, Jun ;
Machado, Marlos C. ;
Moitra, Subhodeep ;
Ponda, Sameera S. ;
Wang, Ziyu .
NATURE, 2020, 588 (7836) :77-+
[5]   Two-electron spin correlations in precision placed donors in silicon [J].
Broome, M. A. ;
Gorman, S. K. ;
House, M. G. ;
Hile, S. J. ;
Keizer, J. G. ;
Keith, D. ;
Hill, C. D. ;
Watson, T. F. ;
Baker, W. J. ;
Hollenberg, L. C. L. ;
Simmons, M. Y. .
NATURE COMMUNICATIONS, 2018, 9
[6]   Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope [J].
Celotta, Robert J. ;
Balakirsky, Stephen B. ;
Fein, Aaron P. ;
Hess, Frank M. ;
Rutter, Gregory M. ;
Stroscio, Joseph A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (12)
[7]   Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with Sub-Nanometer Precision [J].
Cortes-del Rio, Eva ;
Mallet, Pierre ;
Gonzalez-Herrero, Hector ;
Lado, Jose Luis ;
Fernandez-Rossier, Joaquin ;
Gomez-Rodriguez, Jose Maria ;
Veuillen, Jean-Yves ;
Brihuega, Ivan .
ADVANCED MATERIALS, 2020, 32 (30)
[8]   CONFINEMENT OF ELECTRONS TO QUANTUM CORRALS ON A METAL-SURFACE [J].
CROMMIE, MF ;
LUTZ, CP ;
EIGLER, DM .
SCIENCE, 1993, 262 (5131) :218-220
[9]   Magnetic control of tokamak plasmas through deep reinforcement learning [J].
Degrave, Jonas ;
Felici, Federico ;
Buchli, Jonas ;
Neunert, Michael ;
Tracey, Brendan ;
Carpanese, Francesco ;
Ewalds, Timo ;
Hafner, Roland ;
Abdolmaleki, Abbas ;
de las Casas, Diego ;
Donner, Craig ;
Fritz, Leslie ;
Galperti, Cristian ;
Huber, Andrea ;
Keeling, James ;
Tsimpoukelli, Maria ;
Kay, Jackie ;
Merle, Antoine ;
Moret, Jean-Marc ;
Noury, Seb ;
Pesamosca, Federico ;
Pfau, David ;
Sauter, Olivier ;
Sommariva, Cristian ;
Coda, Stefano ;
Duval, Basil ;
Fasoli, Ambrogio ;
Kohli, Pushmeet ;
Kavukcuoglu, Koray ;
Hassabis, Demis ;
Riedmiller, Martin .
NATURE, 2022, 602 (7897) :414-+
[10]  
Drost R, 2017, NAT PHYS, V13, P668, DOI [10.1038/nphys4080, 10.1038/NPHYS4080]