Iterated Watersheds, A Connected Variation of K-Means for Clustering GIS Data

被引:7
作者
Soor, Sampriti [1 ]
Challa, Aditya [1 ]
Danda, Sravan [1 ]
Sagar, B. S. Daya [1 ]
Najman, Laurent [2 ]
机构
[1] Indian Stat Inst, Syst Sci & Informat Unit, Bangalore 560059, Karnataka, India
[2] Univ Paris Est, ESIEE Paris, ENPC, LIGM UMR 8049,CNRS,UPEMLV, F-93162 Noisy Le Grand, France
关键词
Clustering algorithms; Partitioning algorithms; Cost function; Approximation algorithms; Image segmentation; Roads; Graph clustering; K-means; E-governance; watersheds; IMAGE; ALGORITHMS;
D O I
10.1109/TETC.2019.2910147
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a novel algorithm to obtain a solution to the clustering problem with an additional constraint of connectivity. This is achieved by suitably modifying K-Means algorithm to include connectivity constraints. The modified algorithm involves repeated application of watershed transform, and hence is referred to as iterated watersheds. Detailed analysis of the algorithm is performed using toy examples. Iterated watersheds is compared with several image segmentation algorithms. It has been shown that iterated watersheds performs better than methods such as spectral clustering, isoperimetric partitioning, and K-Means on various measures. To illustrate the applicability of iterated watersheds - a simple problem of placing emergency stations and suitable cost function is considered. Using real world road networks of various cities, iterated watersheds is compared with K-Means and greedy K-center methods. It is observed that iterated watersheds result in 4 - 66 percent improvement over K-Means and in 31 - 72 percent improvement over Greedy K-Centers in experiments on road networks of various cities.
引用
收藏
页码:626 / 636
页数:11
相关论文
共 50 条
  • [41] Sparse Clustering with K-Means - Which Penalties and for Which Data?
    Chavent, Marie
    Cottrell, Marie
    Mourer, Alex
    Olteanu, Madalina
    ADVANCES IN SELF-ORGANIZING MAPS, LEARNING VECTOR QUANTIZATION, INTERPRETABLE MACHINE LEARNING, AND BEYOND, WSOM PLUS 2024, 2024, 1087 : 32 - 41
  • [42] Optimized big data K-means clustering using MapReduce
    Xiaoli Cui
    Pingfei Zhu
    Xin Yang
    Keqiu Li
    Changqing Ji
    The Journal of Supercomputing, 2014, 70 : 1249 - 1259
  • [43] K-means clustering for SAT-AIS data analysis
    Mieczynska, Marta
    Czarnowski, Ireneusz
    WMU JOURNAL OF MARITIME AFFAIRS, 2021, 20 (03) : 377 - 400
  • [44] K*-Means: An Effective and Efficient K-means Clustering Algorithm
    Qi, Jianpeng
    Yu, Yanwei
    Wang, Lihong
    Liu, Jinglei
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 242 - 249
  • [45] Spinal Cord Based Kidney Segmentation Using Connected Component Labeling and K-Means Clustering Algorithm
    Tuncer, Seda Arslan
    Alkan, Ahmet
    TRAITEMENT DU SIGNAL, 2019, 36 (06) : 521 - 527
  • [46] Improved K-means clustering algorithm
    Zhang, Zhe
    Zhang, Junxi
    Xue, Huifeng
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 5, PROCEEDINGS, 2008, : 169 - 172
  • [47] Random Projection for k-means Clustering
    Sieranoja, Sami
    Franti, Pasi
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 680 - 689
  • [48] A notion of stability for k-means clustering
    Le Gouic, T.
    Paris, Q.
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 4239 - 4263
  • [49] The MinMax k-Means clustering algorithm
    Tzortzis, Grigorios
    Likas, Aristidis
    PATTERN RECOGNITION, 2014, 47 (07) : 2505 - 2516
  • [50] K-Means Divide and Conquer Clustering
    Khalilian, Madjid
    Boroujeni, Farsad Zamani
    Mustapha, Norwati
    Sulaiman, Md. Nasir
    2009 INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, PROCEEDINGS, 2009, : 306 - 309