The dual conformal box integral in Minkowski space

被引:4
|
作者
Corcoran, Luke [1 ,2 ]
Staudacher, Matthias [1 ,2 ,3 ]
机构
[1] Humboldt Univ, Inst Math, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[2] Humboldt Univ, Inst Phys, IRIS Adlershof, Zum Grossen Windkanal 6, D-12489 Berlin, Germany
[3] Ewha Womans Univ, Dept Phys, DaeHyun 11-1, Seoul 120750, South Korea
关键词
D O I
10.1016/j.nuclphysb.2021.115310
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The dual conformal box integral in Minkowski space is not fully determined by the conformal invariants z and (z) over bar. Depending on the kinematic region its value is on a 'branch' of the Bloch-Wigner function which occurs in the Euclidean case. Dual special conformal transformations in Minkowski space can change the kinematic region in such a way that the value of the integral jumps to another branch of this function, encoding a subtle breaking of dual conformal invariance for the integral. We classify conformally equivalent configurations of four points in compactified Minkowski space. We show that starting with any configuration, one can reach up to four branches of the integral using dual special conformal transformations. We also show that most configurations with real z and (z) over bar can be conformally mapped to a configuration in the same kinematic region with two points at infinity, where the box integral can be calculated directly in Minkowski space using only the residue theorem. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:35
相关论文
共 50 条