de Morgan bisemilattices

被引:28
作者
Brzozowski, JA [1 ]
机构
[1] Univ Waterloo, Dept Comp Sci, Waterloo, ON N2L 3G1, Canada
来源
30TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS | 2000年
关键词
D O I
10.1109/ISMVL.2000.848616
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study de Morgan bisemilattices, which are algebras of the form (S, square, Lambda, (-), 1, 0), where (S, square, Lambda) is a bisemilattice, 1 and 0 are the unit and zero elements of S, and - is a unary operation, called quasi-complementation, that satisfies the involution law and de Morgan's laws. De Morgan bisemilattices are generalizations of de Morgan algebras, and have applications in multi-valued simulations of digital circuits. We present some basic observations about bisemilattices, and provide a set-theoretic characterization for a subfamily of de Morgan bisemilattices, which we call locally distributive de Morgan bilattices.
引用
收藏
页码:173 / 178
页数:4
相关论文
共 14 条
[1]  
Balbes R., 1974, DISTRIBUTIVE LATTICE
[2]  
Balbes R., 1970, FUND MATH, V68, P207
[3]   A characterization of finite ternary algebras [J].
Brzozowski, JA ;
Lou, JJ ;
Negulescu, R .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1997, 7 (06) :713-721
[4]  
BRZOZOWSKI JA, 1995, ASYNCHRONOUS CIRCUIT
[5]  
BRZOZOWSKI JA, 1999, CHARACTERIZATION MOR
[6]   A Cayley theorem for ternary algebras [J].
Esik, Z .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1998, 8 (03) :311-316
[7]   BILATTICES AND THE SEMANTICS OF LOGIC PROGRAMMING [J].
FITTING, M .
JOURNAL OF LOGIC PROGRAMMING, 1991, 11 (02) :91-116
[8]  
Ginsberg M. L., 1988, Computational Intelligence, V4, P265, DOI 10.1111/j.1467-8640.1988.tb00280.x
[9]  
LEWIS DW, 1972, THESIS SYRACUSE U SY
[10]  
LEWIS DW, 1972, P DES AUT WORKSH JUN, P157