Exact Boundary Condition for Semi-discretized Schrodinger Equation and Heat Equation in a Rectangular Domain

被引:11
作者
Pang, Gang [1 ]
Yang, Yibo [2 ]
Tang, Shaoqiang [3 ,4 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[3] Peking Univ, HEDPS, CAPT, Beijing 100871, Peoples R China
[4] Peking Univ, LTCS, Coll Engn, Beijing 100871, Peoples R China
关键词
Exact boundary condition; Schrodinger equation; Heat equation; Kernel function; Corner effect; ARTIFICIAL BOUNDARY; UNBOUNDED-DOMAINS; TRANSPARENT;
D O I
10.1007/s10915-016-0344-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A convolution type exact/transparent boundary condition is proposed for simulating a semi-discretized linear Schrodinger equation on a rectangular computational domain. We calculate the kernel functions for a single source problem, and subsequently those over the rectangular domain. Approximate kernel functions are pre-computed numerically from discrete convolutionary equations. With a Crank-Nicolson scheme for time integration, the resulting approximate boundary conditions effectively suppress boundary reflections, and resolve the corner effect. The proposed boundary treatment, with a parameter modified, applies readily to a semi-discretized heat equation.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 23 条
[1]   Rapid evaluation of nonreflecting boundary kernels or time-domain wave propagation [J].
Alpert, B ;
Greengard, L ;
Hagstrom, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1138-1164
[2]   Numerical schemes for the simulation of the two-dimensional Schrodinger equation using non-reflecting boundary conditions [J].
Antoine, X ;
Besse, C ;
Mouysset, V .
MATHEMATICS OF COMPUTATION, 2004, 73 (248) :1779-1799
[3]  
Antoine X, 2008, COMMUN COMPUT PHYS, V4, P729
[4]   Absorbing boundary conditions for the two-dimensional Schrodinger equation with an exterior potential [J].
Antoine, Xavier ;
Besse, Christophe ;
Klein, Pauline .
NUMERISCHE MATHEMATIK, 2013, 125 (02) :191-223
[5]   ABSORBING BOUNDARY CONDITIONS FOR GENERAL NONLINEAR SCHRODINGER EQUATIONS [J].
Antoine, Xavier ;
Besse, Christophe ;
Klein, Pauline .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02) :1008-1033
[6]  
Arnold A., 2003, COMMUN MATH SCI, V1, P501, DOI [DOI 10.4310/CMS.2003.V1.N3.A7, 10.4310/CMS.2003.v1.n3.a7]
[7]  
Arnold A, 2012, COMMUN MATH SCI, V10, P889
[8]   IMPLEMENTATION OF TRANSPARENT BOUNDARIES FOR NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION [J].
BASKAKOV, VA ;
POPOV, AV .
WAVE MOTION, 1991, 14 (02) :123-128
[9]   Accurate boundary treatment for transient Schrodinger equation under polar coordinates [J].
Bian, Lei ;
Ji, Songsong ;
Pang, Gang ;
Tang, Shaoqiang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (02) :479-488
[10]  
Du Q., PREPRINT