Application of the Discrete Empirical Interpolation Method to Reduced Order Modeling of Nonlinear and Parametric Systems

被引:30
作者
Antil, Harbir [1 ]
Heinkenschloss, Matthias [2 ]
Sorensen, Danny C. [2 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
[2] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
来源
REDUCED ORDER METHODS FOR MODELING AND COMPUTATIONAL REDUCTION | 2014年 / 9卷
关键词
REDUCTION; CONVERGENCE; EQUATIONS; DRAG; FLOW; POD;
D O I
10.1007/978-3-319-02090-7_4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Projection based methods lead to reduced order models (ROMs) with dramatically reduced numbers of equations and unknowns. However, for nonlinear or parametrically varying problems the cost of evaluating these ROMs still depends on the size of the full order model and therefore is still expensive. The Discrete Empirical Interpolation Method (DEIM) further approximates the nonlinearity in the projection based ROM. The resulting DEIM ROM nonlinearity depends only on a few components of the original nonlinearity. If each component of the original nonlinearity depends only on a few components of the argument, the resulting DEIM ROM can be evaluated efficiently at a cost that is independent of the size of the original problem. For systems obtained from finite difference approximations, the ith component of the original nonlinearity often depends only on the ith component of the argument. This is different for systems obtained using finite element methods, where the dependence is determined by the mesh and by the polynomial degree of the finite element subspaces. This paper describes two approaches of applying DEIM in the finite element context, one applied to the assembled and the other to the unassembled form of the nonlinearity. We carefully examine how the DEIM is applied in each case, and the substantial efficiency gains obtained by the DEIM. In addition, we demonstrate how to apply DEIM to obtain ROMs for a class of parameterized system that arises, e. g., in shape optimization. The evaluations of the DEIM ROMs are substantially faster than those of the standard projection based ROMs. Additional gains are obtained with the DEIM ROMs when one has to compute derivatives of the model with respect to the parameter.
引用
收藏
页码:101 / 136
页数:36
相关论文
共 33 条
[1]  
[Anonymous], THESIS
[2]  
Antoulas A. C., 2005, ADV DESIGN CONTROL, V6
[3]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[4]   Numerical parameter estimation for chemical models in multidimensional reactive flows [J].
Becker, R ;
Braack, M ;
Vexler, B .
COMBUSTION THEORY AND MODELLING, 2004, 8 (04) :661-682
[5]   CONVERGENCE RATES FOR GREEDY ALGORITHMS IN REDUCED BASIS METHODS [J].
Binev, Peter ;
Cohen, Albert ;
Dahmen, Wolfgang ;
Devore, Ronald ;
Petrova, Guergana ;
Wojtaszczyk, Przemyslaw .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) :1457-1472
[6]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[7]   A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD [J].
Buffa, Annalisa ;
Maday, Yvon ;
Patera, Anthony T. ;
Prud'homme, Christophe ;
Turinici, Gabriel .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (03) :595-603
[8]   Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media [J].
Chaturantabut, Saifon ;
Sorensen, Danny C. .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2011, 17 (04) :337-353
[9]   NONLINEAR MODEL REDUCTION VIA DISCRETE EMPIRICAL INTERPOLATION [J].
Chaturantabut, Saifon ;
Sorensen, Danny C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) :2737-2764
[10]  
ELMAN H, 2005, FINITE ELEMENTS FAST