Disabled submarine (DISSUB) survivors will achieve inert gas tissue saturation within 24 h. Direct ascent to the surface when saturated carries a high risk of decompression sickness (DCS) and death, yet may be necessary during rescue or escape. O-2 has demonstrated benefits in decreasing morbidity and mortality resulting from DCS by enhancing inert gas elimination. Perfluorocarbons (PFCs) also mitigate the effects of DCS by decreasing bubble formation and increasing O-2 delivery. Our hypothesis is that combining O-2 prebreathing (OPB) and PFC administration will reduce the incidence of DCS and death following saturation in an established 20-kg swine model. Yorkshire swine (20 +/- 6.5 kg) were compressed to 5 atmospheres (ATA) in a dry chamber for 22 h before randomization into one of four groups: 1) air and saline, 2) OPB and saline, 3) OPB with PFC given at depth, 4) OPB with PFC given after surfacing. OPB animals received > 90% O-2 for 9 min at depth. All animals were returned to the surface ( 1 ATA) without decompression stops. The incidence of severe DCS < 2 h after surfacing was 96%, 63%, 82%, and 29% for groups 1, 2, 3, and 4, respectively. The incidence of death was 88%, 41%, 54%, and 5% for groups 1, 2, 3, and 4, respectively. OPB combined with PFC administration after surfacing provided the greatest reduction in DCS morbidity and mortality in a saturation swine model. O-2-related seizure activity before reaching surface did not negatively affect outcome, but further safety studies are warranted.