Bound on resistivity in flat-band materials due to the quantum metric

被引:36
作者
Mitscherling, Johannes [1 ]
Holder, Tobias [2 ]
机构
[1] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
关键词
CORRELATED STATES; SUPERCONDUCTIVITY; INSULATOR;
D O I
10.1103/PhysRevB.105.085154
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The quantum metric is a central quantity of band theory but has so far not been related to many response coefficients due to its nonclassical origin. However, within a newly developed Kubo formalism for fast relaxation, the decomposition of the dc electrical conductivity into both classical (intraband) and quantum (interband) contributions recently revealed that the interband part is proportional to the quantum metric. Here, we show that interband effects due to the quantum metric can be significantly enhanced and even dominate the conductivity for semimetals at charge neutrality and for systems with highly quenched bandwidth. This is true in particular for topological flat-band materials of nonzero Chern number, where for intermediate relaxation rates an upper bound exists for the resistivity due to the common geometrical origin of quantum metric and Berry curvature. We suggest to search for these effects in highly tunable rhombohedral trilayer graphene flakes.
引用
收藏
页数:11
相关论文
共 49 条
[31]   Flat-band magnetism and helical magnetic order in Ni-doped SrCo2As2 [J].
Li, Yu ;
Liu, Zhonghao ;
Xu, Zhuang ;
Song, Yu ;
Huang, Yaobo ;
Shen, Dawei ;
Ma, Ni ;
Li, Ang ;
Chi, Songxue ;
Frontzek, Matthias ;
Cao, Huibo ;
Huang, Qingzhen ;
Wang, Weiyi ;
Xie, Yaofeng ;
Zhang, Rui ;
Rong, Yan ;
Shelton, William A. ;
Young, David P. ;
DiTusa, J. F. ;
Dai, Pengcheng .
PHYSICAL REVIEW B, 2019, 100 (09)
[32]   Time-reversal invariant topological moiré flat band: A platform for the fractional quantum spin Hall effect [J].
Wu, Yi-Ming ;
Shaffer, Daniel ;
Wu, Zhengzhi ;
Santos, Luiz H. .
PHYSICAL REVIEW B, 2024, 109 (11)
[33]   Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms [J].
Zeng, Chao ;
Shi, Yue-Ran ;
Mao, Yi-Yi ;
Wu, Fei-Fei ;
Xie, Yan-Jun ;
Yuan, Tao ;
Dai, Han-Ning ;
Chen, Yu-Ao .
CHINESE PHYSICS B, 2023, 33 (01)
[34]   Pairing and non-Fermi liquid behavior in partially flat-band systems: Beyond nesting physics [J].
Sayyad, Sharareh ;
Huang, Edwin W. ;
Kitatani, Motoharu ;
Vaezi, Mohammad-Sadegh ;
Nussinov, Zohar ;
Vaezi, Abolhassan ;
Aoki, Hideo .
PHYSICAL REVIEW B, 2020, 101 (01)
[35]   Crystal net catalog of model flat band materials [J].
Neves, Paul M. ;
Wakefield, Joshua P. ;
Fang, Shiang ;
Nguyen, Haimi ;
Ye, Linda ;
Checkelsky, Joseph G. .
NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
[36]   Flat-band superconductivity in periodically strained graphene: mean-field and Berezinskii-Kosterlitz-Thouless transition [J].
Peltonen, Teemu J. ;
Heikkila, Tero T. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (36)
[37]   Lattice deformation on flat-band modulation in 3D Hopf-linked carbon allotrope: Hopfene [J].
Tomita, Isao ;
Saito, Shinichi .
APPLIED PHYSICS LETTERS, 2019, 115 (08)
[38]   Majorana Corner Modes and Flat-Band Majorana Edge Modes in Superconductor/Topological-Insulator/Superconductor Junctions [J].
Chen, Xiao-Ting ;
Liu, Chun-Hui ;
Xu, Dong-Hui ;
Chen, Chui-Zhen .
CHINESE PHYSICS LETTERS, 2023, 40 (09)
[39]   Yu-Shiba-Rusinov states, BCS-BEC crossover, and exact solution in the flat-band limit [J].
Zitko, R. ;
Pavesic, L. .
PHYSICAL REVIEW B, 2022, 106 (02)
[40]   Evidence for Dirac flat band superconductivity enabled by quantum geometry [J].
Tian, Haidong ;
Gao, Xueshi ;
Zhang, Yuxin ;
Che, Shi ;
Xu, Tianyi ;
Cheung, Patrick ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Randeria, Mohit ;
Zhang, Fan ;
Lau, Chun Ning ;
Bockrath, Marc W. .
NATURE, 2023, 614 (7948) :440-+