Backlund transformation of Frobenius Painleve equations

被引:7
作者
Wang, Haifeng [1 ]
Li, Chuanzhong [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2018年 / 32卷 / 17期
基金
中国国家自然科学基金;
关键词
Z(n)-Painleve IV equation; Backlund transformation; Frobenius KP hierarchy; Frobenius Painleve equation; DRESSING CHAINS; HIERARCHY;
D O I
10.1142/S0217984918501816
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, in order to generalize the Painleve equations, we give a Z(n)-Painleve IV equation which can apply Backlund transformations to explore. And these Backlund transformations can generate new solutions from seed solutions. Similarly, we also introduce a Frobenius Painleve I equation and Frobenius Painleve III equation. Then, we find the connection between the Frobenius KP hierarchy and Frobenius Painleve I equation by the Virasoro constraint. Further, in order to seek different aspects of Painleve equations, we introduce the Lax pair, Hirota bilinear equation and tau functions. Moreover, some Frobenius Okamoto-like equations and Frobenius Toda-like equations can also help us to explore these equations.
引用
收藏
页数:23
相关论文
共 50 条
[41]   A Backlund transformation between the four-dimensional Martinez Alonso-Shabat and Ferapontov-Khusnutdinova equations [J].
Kruglikov, B. S. ;
Morozov, O. I. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 188 (03) :1358-1360
[42]   Soliton and breather solutions on the nonconstant background of the local and nonlocal Lakshmanan-Porsezian-Daniel equations by Backlund transformation [J].
Xie, Wei-Kang ;
Fan, Fang-Cheng .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05)
[43]   Backlund transformation and multisoliton-like solutions for (2+1)-dimensional dispersive long wave equations [J].
Zhang, JF .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2000, 33 (04) :577-580
[44]   Backlund Transformations for Nonlinear Differential Equations and Systems [J].
Redkina, Tatyana, V ;
Zakinyan, Robert G. ;
Zakinyan, Arthur R. ;
Surneva, Olesya B. ;
Yanovskaya, Olga S. .
AXIOMS, 2019, 8 (02)
[45]   Painleve analysis, bilinear form, Backlund transformation, solitons, periodic waves and asymptotic properties for a generalized Calogero-Bogoyavlenskii-Konopelchenko-Schiff system in a fluid or plasma [J].
Liu, Shao-Hua ;
Tian, Bo ;
Wang, Meng .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (09)
[46]   Painleve analysis, auto-Backlund transformations and exact solutions for a simplified model for reacting mixtures [J].
Yan, Z .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 326 (3-4) :344-359
[47]   BACKLUND TRANSFORMATION OF A NON-ISOSPECTRAL KPESCS AND ITS NONLINEAR COUPLED SYSTEM [J].
Sun, Ye-Peng ;
Yu, Guo-Fu .
MODERN PHYSICS LETTERS B, 2009, 23 (30) :3581-3595
[48]   GENERALIZED BOUSSINESQ EQUATION AND KDV EQUATION - PAINLEVE PROPERTIES, BACKLUND-TRANSFORMATIONS AND LAX PAIRS [J].
LOU, SY .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1991, 34 (09) :1098-1108
[49]   Backlund Transformation for the BC-Type Toda Lattice [J].
Kuznetsov, Vadim ;
Sklyanin, Evgeny .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
[50]   An update of a Backlund transformation and its applications to the Boussinesq system [J].
Sun, Ying-ying ;
Sun, Wan-yi .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 421