Interval Robust Multi-Objective Evolutionary Algorithm

被引:18
作者
Soares, G. L. [1 ]
Guimaraes, F. G. [2 ]
Maia, C. A. [3 ]
Vasconcelos, J. A. [3 ]
Jaulin, L. [4 ]
机构
[1] Pontificia Univ Catolica PUC Minas, Belo Horizonte, MG, Brazil
[2] Univ Fed Ouro Preto, Dept Comp Sci, Ouro Preto, Brazil
[3] Univ Fed Minas Gerais, Dept Elect Engn, Belo Horizonte, MG, Brazil
[4] ENSIETA, Ecole Natl Super Ingn, Brest, France
来源
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5 | 2009年
关键词
genetic algorithms; evolutionary algorithms; robust multi-objective optimization; robust Pareto front; robust test functions; interval analysis; OPTIMIZATION;
D O I
10.1109/CEC.2009.4983138
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Uncertainties are commonly present in optimization systems, and when they are considered in the design stage, the problem usually is called a robust optimization problem. Robust optimization problems can be treated as noisy optimization problems, as worst case minimization problems, or by considering the mean and standard deviation values of the objective and constraint functions. The worst case scenario is preferred when the effects of the uncertainties on the nominal solution are critical to the application under consideration. Based on this worst case scenario, we developed the [I]RMOEA (Interval Robust Multi-Objective Evolutionary Algorithm), a hybrid method that combines interval analysis techniques to deal with the uncertainties in a deterministic way and a multi-objective evolutionary algorithm. We introduce [I]RMOEA and illustrate it on three robust test functions based on the ZDT problems. The results show that [I]RMOEA is an adequate way of tackling robust optimization problems with evolutionary techniques taking advantage of the interval analysis framework.
引用
收藏
页码:1637 / +
页数:3
相关论文
共 27 条
[1]  
[Anonymous], 2001, APPL INTERVAL ANAL
[2]   Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers [J].
Brandes, Sinja ;
Cosovic, Ivan ;
Schnell, Michael .
IEEE COMMUNICATIONS LETTERS, 2006, 10 (06) :420-422
[3]  
BUI L, 2005, GEN EV COMP C GECCO
[4]   The scenario approach to robust control design [J].
Calafiore, Giuseppe C. ;
Campi, Marco C. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :742-753
[5]   Computing the pessimism of inclusion functions [J].
Chabert, Gilles ;
Jaulin, Luc .
RELIABLE COMPUTING, 2007, 13 (06) :489-504
[6]   Evolutionary multi-objective optimization: A historical view of the field [J].
Coello Coello, Carlos A. .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2006, 1 (01) :28-36
[7]  
Deb K, 2005, LECT NOTES COMPUT SC, V3410, P150
[8]  
Deb K., 2010, MULTIOBJECTIVE OPTIM
[9]  
DEVALE J, 2002, DSN 02, P145
[10]  
Dias L., 1999, J. Multi-Criteria Decis. Anal., V8, P74