Sharp Bounds for Lebesgue Constants of Barycentric Rational Interpolation at Equidistant Points

被引:5
作者
Ibrahimoglu, B. Ali [1 ]
Cuyt, Annie [2 ]
机构
[1] Yildiz Tekn Univ, Dept Engn Math, Istanbul, Turkey
[2] Univ Antwerp, Math & Comp Sci, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
barycentric rational interpolation; linear interpolation; equidistant nodes; preassigned poles; POLYNOMIAL INTERPOLATION; CHEBYSHEV; NODES;
D O I
10.1080/10586458.2015.1072862
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A rough analysis of the growth of the Lebesgue constant in the case of barycentric rational interpolation at equidistant interpolation points was made in [Bos et al. 11] and [Bos et al. 12], leading to the conclusion that it only grows logarithmically. Herewe give a fine analysis, obtaining the precise growth formula 2/pi (In(n+1) + In 2 + gamma) + o(1) for the Lebesgue constant under consideration, with gamma being the Euler constant. The similarity between barycentric rational interpolation at equidistant points and polynomial interpolation at Chebyshev nodes (or the like) is remarkable. After revisiting the polynomial interpolation case in Section 1 and introducing the barycentric rational interpolation case in Section 2, tight lower and upper bound estimates are given in Section 3. These fine results could only be formulated after performing very high-order numerical experiments in exact arithmetic. In Section 4, we indicate that the result can be extended to the rational interpolants introduced by Floater and Hormann in [ Floater and Hormann 07]. Finally, the proof of the new tight bounds is detailed in Section 5.
引用
收藏
页码:347 / 354
页数:8
相关论文
共 19 条
[1]   Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval [J].
Berrut, JP ;
Mittelmann, HD .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (06) :77-86
[2]   RATIONAL FUNCTIONS FOR GUARANTEED AND EXPERIMENTALLY WELL-CONDITIONED GLOBAL INTERPOLATION [J].
BERRUT, JP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 15 (01) :1-16
[3]   On the Lebesgue constant of barycentric rational interpolation at equidistant nodes [J].
Bos, Len ;
De Marchi, Stefano ;
Hormann, Kai ;
Klein, Georges .
NUMERISCHE MATHEMATIK, 2012, 121 (03) :461-471
[4]   On the Lebesgue constant of Berrut's rational interpolant at equidistant nodes [J].
Bos, Len ;
De Marchi, Stefano ;
Hormann, Kai .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) :504-510
[5]   Good Interpolation Points: Learning from Chebyshev, Fekete, Haar and Lebesgue [J].
Cuyt, Annie ;
Ibrahimoglu, B. Ali ;
Yaman, Irem .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
[6]   AUSWERTUNG DER NORMEN VON INTERPOLATIONSOPERATOREN [J].
EHLICH, H ;
ZELLER, K .
MATHEMATISCHE ANNALEN, 1966, 164 (02) :105-&
[7]   Barycentric rational interpolation with no poles and high rates of approximation [J].
Floater, Michael S. ;
Hormann, Kai .
NUMERISCHE MATHEMATIK, 2007, 107 (02) :315-331
[8]  
GUNTTNER R, 1988, SIAM J NUMER ANAL, V25, P461
[9]  
GUNTTNER R, 1980, SIAM J NUMER ANAL, V17, P512, DOI 10.1137/0717043
[10]   From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex [J].
Hesthaven, JS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :655-676