Numerical simulation of coke collapse and its optimization during burden charging at the top of bell-less blast furnace

被引:17
作者
Zhou, Heng [1 ,2 ]
Wu, Jianlong [3 ]
Hong, Zhibin [2 ]
Wang, Li Pang [4 ]
Wu, Shengli [1 ,2 ]
Kou, Mingyin [1 ,2 ]
Wang, Guangwei [2 ]
Luo, Yiwa [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Beijing 100083, Peoples R China
[3] Shougang Grp Res Inst Technol, Ironmaking Dept, Beijing 100041, Peoples R China
[4] Natl Taipei Univ Technol, Coll Engn, Inst Environm Engn & Management, Taipei 10608, Taiwan
基金
中国国家自然科学基金;
关键词
Blast furnace; Coke collapse; Ore-to-coke ratio; Discrete element model; COREX SHAFT FURNACE; DISCRETE PARTICLE SIMULATION; SOLID FLOW; STRESS-DISTRIBUTION; ELEMENT SIMULATION; SIZE SEGREGATION; ROTATING CHUTE; SCALE-MODEL; DEM; BEHAVIOR;
D O I
10.1016/j.powtec.2021.05.033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Coke collapse is very important in blast furnaces as it determines the ore-to-coke ratio and further affects the gas utilization and CO2 emissions. Therefore, a three-dimensional model considering three types of ores and burden matrix charging of a bell-less top blast furnace is established using the discrete element method (DEM). The effects of reverse charging, coke platform width, central coke charging, and pellet ratio are investigated. The results show that reverse charging decreases the amount of coke collapse and improves the radial ore-to-coke distribution. A central coke charging as low as 5 wt% significantly reduces the coke collapse and improves the radial burden distribution. The platform width is recommended to be larger than 2 m with a pellet ratio no larger than 40% to improve the ore-to-coke ratio distribution. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 52 条
[1]   Estimation of Bulk Density Distribution in Particle Charging Process Using Discrete Element Method Considering Particle Shape [J].
Akashi, Masatoshi ;
Mio, Hiroshi ;
Shimosaka, Atsuko ;
Shirakawa, Yoshiyuki ;
Hidaka, Jusuke ;
Nomura, Seiji .
ISIJ INTERNATIONAL, 2008, 48 (11) :1500-1506
[2]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[3]   Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes [J].
Di Renzo, A ;
Di Maio, FP .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (03) :525-541
[4]   Influence of Blast Furnace Inner Volume on Solid Flow and Stress Distribution by Three Dimensional Discrete Element Method [J].
Fan, Zhengyun ;
Igarashi, Satoru ;
Natsui, Shungo ;
Ueda, Shigeru ;
Yang, Tianjun ;
Inoue, Ryo ;
Ariyama, Tatsuro .
ISIJ INTERNATIONAL, 2010, 50 (10) :1406-1412
[5]   Transient Behavior of Burden Descending and Influence of Cohesive Zone Shape on Solid Flow and Stress Distribution in Blast Furnace by Discrete Element Method [J].
Fan, Zhengyun ;
Natsui, Shungo ;
Ueda, Shigeru ;
Yang, Tianjun ;
Kano, Junya ;
Inoue, Ryo ;
Ariyama, Tatsuro .
ISIJ INTERNATIONAL, 2010, 50 (07) :946-953
[6]  
Hockings L., 1988, IRONMAK C P, V48, P289
[7]  
Inada T., 1990, IRONMAK C P, V50, P263
[8]   Burden distribution analysis by digital image processing in a scale model of a blast furnace shaft [J].
Jimenez, J ;
Mochón, J ;
Formoso, A ;
de Ayala, JS .
ISIJ INTERNATIONAL, 2000, 40 (02) :114-120
[9]  
KAJIWARA Y, 1984, T IRON STEEL I JPN, V24, P799
[10]  
Kloss Ch., 2012, 9 INT C CFD MIN PROC