Non-invasive Imaging in gene therapy

被引:42
作者
Raty, Jani Kristian
Liimatainen, Timo
Kaikkonen, Minna Unelma
Grahn, Olli
Airenne, Kari Jumani
Yla-Herttuala, Seppo
机构
[1] Univ Kuopio, A I Virtanen Inst Mol Sci, Dept Biotechnol & Mol Med, FIN-70211 Kuopio, Finland
[2] Univ Kuopio, A I Virtanen Inst Mol Sci, Dept Biomed NMR, Cellular Mol Imaging Grp, FIN-70211 Kuopio, Finland
[3] Univ Kuopio, Dept Med, SF-70210 Kuopio, Finland
[4] Univ Kuopio, Gene Therapy Unit3, FIN-70211 Kuopio, Finland
关键词
D O I
10.1038/sj.mt.26300233
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Several methods are available for non-invasive imaging of gene delivery and transgene expression, including magnetic resonance imaging ( MRI), single photon emission tomography ( SPECT)/ positron emission tomography ( PET), and fluorescence and bioluminescence imaging. However, these imaging modalities differ greatly in terms of their sensitivity, cost, and ability to measure the signal. Whereas MRI can produce a resolution of approximately 50 mu m, optical imaging achieves only 3 - 5 mm but outperforms MRI in terms of the cost of the imaging device. Similarly, SPECT and PET give a resolution of only 1 - 2 mm but provide for relatively easy quantitation of the signal and need only nanograms of probe, compared with the microgram or milligram levels required for MRI and optical imaging. To develop safer and more efficient gene delivery vectors, it is essential to perform rigorous in vivo experiments, to image particle biodistribution and transduction patterns, and to quantify the transgene expression profile. Differences between modalities have a significant effect on the resultant imaging resolution for gene therapy. This review describes the methodologies in use and highlights recent key approaches using the latest imaging modalities in gene therapy. Future trends in gene therapy imaging are also discussed.
引用
收藏
页码:1579 / 1586
页数:8
相关论文
共 106 条
[1]   Direct Comparison of Radiolabeled Probes FMAU, FHBG, and FHPG as PET Imaging Agents for HSV1-tk Expression in a Human Breast Cancer Model [J].
Alauddin, Mian M. ;
Shahinian, Atranik ;
Gordon, Erlinda M. ;
Conti, Peter S. .
MOLECULAR IMAGING, 2004, 3 (02) :76-84
[2]   Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents [J].
Allen, M ;
Bulte, JWM ;
Liepold, L ;
Basu, G ;
Zywicke, HA ;
Frank, JA ;
Young, M ;
Douglas, T .
MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (04) :807-812
[3]  
Altmann A, 2003, J NUCL MED, V44, P973
[4]   In vivo trafficking and targeted delivery of magnetically labeled stem cells [J].
Arbab, AS ;
Jordan, EK ;
Wilson, LB ;
Yocum, GT ;
Lewis, BK ;
Frank, JA .
HUMAN GENE THERAPY, 2004, 15 (04) :351-360
[5]   In vivo quantitative noninvasive imaging of gene transfer by single-photon emission computerized tomography [J].
Auricchio, A ;
Acton, PD ;
Hildinger, M ;
Louboutin, JP ;
Plössl, K ;
O'Connor, E ;
Kung, HF ;
Wilson, JM .
HUMAN GENE THERAPY, 2003, 14 (03) :255-261
[6]   Biodistribution of radioiodinated adenovirus fiber protein knob domain after intravenous injection in mice [J].
Awasthi, V ;
Meinken, G ;
Springer, K ;
Srivastava, SC ;
Freimuth, P .
JOURNAL OF VIROLOGY, 2004, 78 (12) :6431-6438
[7]   Therapeutic use of ultrasound targeted microbubble destruction: A review of non-cardiac applications [J].
Bekeredjian, R ;
Katus, HA ;
Kuecherer, HF .
ULTRASCHALL IN DER MEDIZIN, 2006, 27 (02) :134-140
[8]   Assessing gene expression in vivo: magnetic resonance imaging and spectroscopy [J].
Bell, JD ;
Taylor-Robinson, SD .
GENE THERAPY, 2000, 7 (15) :1259-1264
[9]   Intrahepatic injection of recombinant adeno-associated virus serotype 2 overcomes gender-related differences in liver transduction [J].
Berraondo, Pedro ;
Crettaz, Julien ;
Ochoa, Laura ;
Paneda, Astrid ;
Prieto, Jesus ;
Troconiz, Inaki F. ;
Gonzalez-Aseguinolaza, Gloria .
HUMAN GENE THERAPY, 2006, 17 (06) :601-610
[10]  
Bogdanov A, 2003, CURR OPIN MOL THER, V5, P594