Deep Compression: A Compression Technology for Apron Surveillance Video

被引:6
作者
Lu Zonglei [1 ]
Xu Xianhong [2 ]
机构
[1] Civil Aviat Univ China, Coll Comp Sci & Technol, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Sch Comp Sci & Technol, Tianjin 300300, Peoples R China
关键词
Object detection; video compression; apron surveillance video;
D O I
10.1109/ACCESS.2019.2940252
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a deep compression method that uses some object detection methods to separate moving and stationary objects from a real frame in an apron surveillance video. The extracted object image, the corresponding position information and the background image are stored in a linked list. When the video is decompressed, the extracted object images are restored to the background image according to the corresponding information, and the overall adjustment, such as illumination, is performed according to the stored information. Finally, a video with high similarity to the original video is generated. This video compression method greatly reduces the required storage space without destroying the original video information.
引用
收藏
页码:129966 / 129974
页数:9
相关论文
共 20 条
[1]   Video Compression Based on Spatio-Temporal Resolution Adaptation [J].
Afonso, Mariana ;
Zhang, Fan ;
Bull, David R. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (01) :275-280
[2]  
CHEN T, 2017, P IEEE VISUAL COMMUN, P1, DOI DOI 10.1109/VCIP.2017.8305033
[3]  
Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036
[4]  
Girshick R., 2015, P IEEE INT C COMPUTE, DOI [DOI 10.1109/ICCV.2015.169, 10.1109/ICCV.2015.169]
[5]  
Girshick R., 2014, IEEE COMP SOC C COMP, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81]
[6]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[7]  
Joseph RK, 2016, CRIT POL ECON S ASIA, P1
[8]   MegaDepth: Learning Single-View Depth Prediction from Internet Photos [J].
Li, Zhengqi ;
Snavely, Noah .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2041-2050
[9]   Deep Learning for Generic Object Detection: A Survey [J].
Liu, Li ;
Ouyang, Wanli ;
Wang, Xiaogang ;
Fieguth, Paul ;
Chen, Jie ;
Liu, Xinwang ;
Pietikainen, Matti .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (02) :261-318
[10]   SSD: Single Shot MultiBox Detector [J].
Liu, Wei ;
Anguelov, Dragomir ;
Erhan, Dumitru ;
Szegedy, Christian ;
Reed, Scott ;
Fu, Cheng-Yang ;
Berg, Alexander C. .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :21-37