Exact penalization of pointwise constraints for optimal control problems

被引:0
作者
Casas, Eduardo [1 ]
机构
[1] Univ Cantabria, ETSI Ind & Telecomunicac, Dpto Matemat Aplicada & Ciencias Computac, E-39005 Santander, Spain
来源
CONTROL AND CYBERNETICS | 2009年 / 38卷 / 04期
关键词
optimal control; semilinear elliptic equations; pointwise state constraints; exact penalization; first and second order optimality conditions;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider a control problem governed by a semilinear elliptic equation with pointwise control and state constraints. We analyze the existence of an exact penalization of the state constraints. In particular, we prove that the first and second order optimality conditions imply the existence of such a penalization. Finally, we prove some extra regularity of the strict local minima of the control problem, assuming the existence of an exact penalization for them.
引用
收藏
页码:1131 / 1150
页数:20
相关论文
共 12 条
[1]   AN EXTENSION OF PONTRYAGINS PRINCIPLE FOR STATE-CONSTRAINED OPTIMAL-CONTROL OF SEMILINEAR ELLIPTIC-EQUATIONS AND VARIATIONAL-INEQUALITIES [J].
BONNANS, F ;
CASAS, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) :274-298
[2]  
Bonnans F, 2000, PERTURBATION ANAL OP
[3]   CALMNESS AND EXACT PENALIZATION [J].
BURKE, JV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) :493-497
[4]  
CASAS E, 2007, ESAIM CONTR OPTIM CA, V14, P575
[5]   SUFFICIENT SECOND-ORDER OPTIMALITY CONDITIONS FOR SEMILINEAR CONTROL PROBLEMS WITH POINTWISE STATE CONSTRAINTS [J].
Casas, Eduardo ;
De Los Reyes, Juan Carlos ;
Troeltzsch, Fredi .
SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (02) :616-643
[6]   RECENT ADVANCES IN THE ANALYSIS OF POINTWISE STATE-CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS [J].
Casas, Eduardo ;
Troeltszch, Fredi .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03) :581-600
[7]   NEW APPROACH TO LAGRANGE MULTIPLIERS. [J].
Clarke, Frank H. .
Mathematics of Operations Research, 1976, 1 (02) :165-174
[8]   GENERALIZED PROBLEM OF BOLZA [J].
CLARKE, FH .
SIAM JOURNAL ON CONTROL, 1976, 14 (04) :682-699
[9]  
Grisvard P., 1985, Monographs and Studies in Mathematics, V24
[10]   THE INHOMOGENEOUS DIRICHLET PROBLEM IN LIPSCHITZ-DOMAINS [J].
JERISON, D ;
KENIG, CE .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (01) :161-219