Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences

被引:167
作者
Vaziri, Nosratola D. [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Med, Div Nephrol & Hypertens, Irvine, CA 92717 USA
[2] Univ Calif Irvine, Dept Physiol, Div Nephrol & Hypertens, Irvine, CA USA
[3] Univ Calif Irvine, Dept Biophys, Div Nephrol & Hypertens, Irvine, CA USA
关键词
atherosclerosis; chronic kidney disease; hyperlipidemia; nephrotic syndrome; proteinuria; statins; DENSITY-LIPOPROTEIN RECEPTOR; ANGIOPOIETIN-LIKE; 4; LECITHIN-CHOLESTEROL ACYLTRANSFERASE; ESTER TRANSFER PROTEIN; APOLIPOPROTEIN-A-I; DOWN-REGULATION; SCAVENGER RECEPTOR; GENE-EXPRESSION; VLDL RECEPTOR; SECRETED PCSK9;
D O I
10.1016/j.kint.2016.02.026
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Nephrotic syndrome results in hyperlipidemia and profound alterations in lipid and lipoprotein metabolism. Serum cholesterol, triglycerides, apolipoprotein B (apoB)-containing lipoproteins (very low-density lipoprotein [VLDL], immediate-density lipoprotein [IDL], and low-density lipoprotein [LDL]), lipoprotein(a) (Lp[a]), and the total cholesterol/high-density lipoprotein (HDL) cholesterol ratio are increased in nephrotic syndrome. This is accompanied by significant changes in the composition of various lipoproteins including their cholesterol-totriglyceride, free cholesterol-to-cholesterol ester, and phospholipid-to-protein ratios. These abnormalities are mediated by changes in the expression and activities of the key proteins involved in the biosynthesis, transport, remodeling, and catabolism of lipids and lipoproteins including apoproteins A, B, C, and E; 3-hydroxy-3-methylglutaryl-coenzyme A reductase; fatty acid synthase; LDL receptor; lecithin cholesteryl ester acyltransferase; acyl coenzyme A cholesterol acyltransferase; HDL docking receptor (scavenger receptor class B, type 1 [SR-B1]); HDL endocytic receptor; lipoprotein lipase; and hepatic lipase, among others. The disorders of lipid and lipoprotein metabolism in nephrotic syndrome contribute to the development and progression of cardiovascular and kidney disease. In addition, by limiting delivery of lipid fuel to the muscles for generation of energy and to the adipose tissues for storage of energy, changes in lipid metabolism contribute to the reduction of body mass and impaired exercise capacity. This article provides an overview of the mechanisms, consequences, and treatment of lipid disorders in nephrotic syndrome.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 112 条
  • [1] Identification of scavenger receptor SR-BI as a high density lipoprotein receptor
    Acton, S
    Rigotti, A
    Landschulz, KT
    Xu, SZ
    Hobbs, HH
    Krieger, M
    [J]. SCIENCE, 1996, 271 (5248) : 518 - 520
  • [2] Serum Levels of the Adipokine Fasting-induced Adipose Factor/Angiopoietin-like Protein 4 Depend on Renal Function
    Baranowski, T.
    Kralisch, S.
    Bachmann, A.
    Loessner, U.
    Kratzsch, J.
    Blueher, M.
    Stumvoll, M.
    Fasshauer, M.
    [J]. HORMONE AND METABOLIC RESEARCH, 2011, 43 (02) : 117 - 120
  • [3] Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons
    Beigneux, Anne P.
    Davies, Brandon S. J.
    Gin, Peter
    Weinstein, Michael M.
    Farber, Emily
    Qiao, Xin
    Peale, Franklin
    Bunting, Stuart
    Walzem, Rosemary L.
    Wong, Jinny S.
    Blaner, William S.
    Ding, Zhi-Ming
    Melford, Kristan
    Wongsiriroj, Nuttaporn
    Shu, Xiao
    de Sauvage, Fred
    Ryan, Robert O.
    Fong, Loren G.
    Bensadoun, Andre
    Young, Stephen G.
    [J]. CELL METABOLISM, 2007, 5 (04) : 279 - 291
  • [4] High-density lipoprotein attenuates inflammation and coagulation response on endotoxin challenge in humans
    Birjmohun, Rakesh S.
    van Leuven, Sander I.
    Levels, Johannes H. M.
    van 't Veer, Cornelis
    Kuivenhoven, Jan Albert
    Meijers, Joost C. M.
    Levi, Marcel
    Kastelein, John J. P.
    van der Poll, Tom
    Stroes, Erik S. G.
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2007, 27 (05) : 1153 - 1158
  • [5] Role of lipoprotein-bound NEFAs in enhancing the specific activity of plasma CETP in the nephrotic syndrome
    Braschi, S
    Masson, D
    Rostoker, G
    Florentin, E
    Athias, A
    Martin, C
    Jacotot, B
    Gambert, P
    Lallemant, C
    Lagrost, L
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1997, 17 (11) : 2559 - 2567
  • [6] New Insights Into Human Minimal Change Disease: Lessons From Animal Models
    Chugh, Sumant S.
    Clement, Lionel C.
    Mace, Camille
    [J]. AMERICAN JOURNAL OF KIDNEY DISEASES, 2012, 59 (02) : 284 - 292
  • [7] Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome
    Clement, Lionel C.
    Mace, Camille
    Avila-Casado, Carmen
    Joles, Jaap A.
    Kersten, Sander
    Chugh, Sumant S.
    [J]. NATURE MEDICINE, 2014, 20 (01) : 37 - +
  • [8] Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome
    Clement, Lionel C.
    Avila-Casado, Carmen
    Mace, Camille
    Soria, Elizabeth
    Bakker, Winston W.
    Kersten, Sander
    Chugh, Sumant S.
    [J]. NATURE MEDICINE, 2011, 17 (01) : 117 - U294
  • [9] HIGH-DENSITY-LIPOPROTEINS INHIBIT CYTOKINE-INDUCED EXPRESSION OF ENDOTHELIAL-CELL ADHESION MOLECULES
    COCKERILL, GW
    RYE, KA
    GAMBLE, JR
    VADAS, MA
    BARTER, PJ
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1995, 15 (11) : 1987 - 1994
  • [10] Sequence variations in PCSK9, low LDL, and protection against coronary heart disease
    Cohen, JC
    Boerwinkle, E
    Mosley, TH
    Hobbs, HH
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (12) : 1264 - 1272