On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces

被引:0
作者
Burenkov, V. I. [1 ]
Guliyev, H. V. [2 ]
Guliyev, V. S. [2 ]
机构
[1] Cardiff Univ, Cardiff Sch Math, Shenghennydd Rd, Cardiff CF24 4AG, Wales
[2] Azerbaijan Natl Acad Sci, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
来源
INTERACTION OF ANALYSIS AND GEOMETRY | 2007年 / 424卷
基金
俄罗斯基础研究基金会;
关键词
SINGULAR INTEGRAL-OPERATORS; SUFFICIENT CONDITIONS; RIESZ-POTENTIALS; INEQUALITIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of boundedness of the fractional maximal operator M-alpha from complementary Morrey-type spaces to Mortey-type spaces is reduced to the problem of boundedness of the dual Hardy operator in weighted L-p-spaces on the cone of non-negative non-increasing functions, which allows obtaining sharp sufficient conditions for boundedness of M-alpha.
引用
收藏
页码:17 / +
页数:3
相关论文
共 18 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
[Anonymous], 1969, APPROXIMATION FUNCTI
[3]   Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces [J].
Burenkov, V. I. ;
Guliev, V. S. ;
Guliev, G. V. .
DOKLADY MATHEMATICS, 2006, 74 (01) :540-544
[4]   Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces [J].
Burenkov, VI ;
Guliyev, HV .
STUDIA MATHEMATICA, 2004, 163 (02) :157-176
[5]  
Burenkov VI, 2003, DOKL MATH, V68, P107
[6]  
BURENKOV VI, UNPUB STUD MATH
[7]  
CHIARENZA F., 1987, Rend. Mat. Apple, V7, P273
[8]  
Cruz-Castillo JG, 2003, AGROCHIMICA, V47, P1
[9]  
Cruz-Uribe D, 1999, MATH RES LETT, V6, P417
[10]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+