Bilinear dynamic mode decomposition for quantum control

被引:19
作者
Goldschmidt, Andy [1 ]
Kaiser, E. [2 ]
DuBois, J. L. [3 ]
Brunton, S. L. [2 ]
Kutz, J. N. [4 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
dynamic mode decomposition; quantum control; bilinear control; Koopman operators;
D O I
10.1088/1367-2630/abe972
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Data-driven methods for establishing quantum optimal control (QOC) using time-dependent control pulses tailored to specific quantum dynamical systems and desired control objectives are critical for many emerging quantum technologies. We develop a data-driven regression procedure, bilinear dynamic mode decomposition (biDMD), that leverages time-series measurements to establish quantum system identification for QOC. The biDMD optimization framework is a physics-informed regression that makes use of the known underlying Hamiltonian structure. Further, the biDMD can be modified to model both fast and slow sampling of control signals, the latter by way of stroboscopic sampling strategies. The biDMD method provides a flexible, interpretable, and adaptive regression framework for real-time, online implementation in quantum systems. Further, the method has strong theoretical connections to Koopman theory, which approximates nonlinear dynamics with linear operators. In comparison with many machine learning paradigms minimal data is needed to construct a biDMD model, and the model is easily updated as new data is collected. We demonstrate the efficacy and performance of the approach on a number of representative quantum systems, showing that it also matches experimental results. Video Abstract Video Abstract: Bilinear dynamic mode decomposition for quantum control
引用
收藏
页数:17
相关论文
共 69 条
  • [1] Modeling and Control of Quantum Systems: An Introduction
    Altafini, Claudio
    Ticozzi, Francesco
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) : 1898 - 1917
  • [2] Variable Projection Methods for an Optimized Dynamic Mode Decomposition
    Askham, Travis
    Kutz, J. Nathan
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 380 - 416
  • [3] Dynamic Mode Decomposition for Compressive System Identification
    Bai, Zhe
    Kaiser, Eurika
    Proctor, Joshua L.
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. AIAA JOURNAL, 2020, 58 (02) : 561 - 574
  • [4] Ball H., 2020, ARXIV200104060QUANTP
  • [5] Biamonte J, 2019, ARXIVQUANTPH19121004
  • [6] The Magnus expansion and some of its applications
    Blanes, S.
    Casas, F.
    Oteo, J. A.
    Ros, J.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 470 (5-6): : 151 - 238
  • [7] Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography
    Blume-Kohout, Robin
    Gamble, John King
    Nielsen, Erik
    Rudinger, Kenneth
    Mizrahi, Jonathan
    Fortier, Kevin
    Maunz, Peter
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [8] Breuer H.-P., 2010, The Theory of Open Quantum Systems
  • [9] Control of quantum phenomena: past, present and future
    Brif, Constantin
    Chakrabarti, Raj
    Rabitz, Herschel
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [10] Introduction to average Hamiltonian theory. I. Basics
    Brinkmann, Andreas
    [J]. CONCEPTS IN MAGNETIC RESONANCE PART A, 2016, 45A (06)