Constructing micropore-rich nitrogen-doped carbon for high-performance supercapacitor and adsorption of carbon dioxide

被引:5
|
作者
Sahu, Priya [1 ,2 ]
Mishra, Ranjit [1 ,2 ]
Panigrahy, Sonali [1 ,2 ]
Panda, Prajnashree [1 ,2 ]
Barman, Sudip [1 ,2 ]
机构
[1] Natl Inst Sci Educ & Res NISER, Sch Chem Sci, Bhubaneswar 752050, Odisha, India
[2] Homi Bhabha Natl Inst, Mumbai, Maharashtra, India
关键词
activation; electrode; heteroatom; micropore; physisorption; HIERARCHICALLY POROUS CARBON; ELECTROCHEMICAL ENERGY-STORAGE; ADVANCED ELECTRODE MATERIALS; ACTIVATED CARBON; CO2; CAPTURE; GRAPHITIC CARBON; AREA; NANOSHEETS;
D O I
10.1002/er.8075
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Design of advanced highly porous heteroatom-doped carbon is desirable for their wide presence in applications like electrochemical energy storage systems, gas adsorption, and separation processes. In this work, porous nitrogen-doped carbon was developed from ethylenediamine via an in situ self-doping solvothermal process followed by pyrolysis and KOH activation under high temperature. Micropore-rich nitrogen-containing carbon materials were prepared through variation of the KOH/C ratio during activation and their electrochemical performance in alkaline electrolyte as well as CO2 sorption behaviour was evaluated. The porous carbon developed using KOH/C ratio of 2 delivered highest supercapacitor performance in 6 M KOH achieving high specific capacitance of 353 F g(-1) with 1 A g(-1) of current due to its high pore volume and micropore rich surface. The functionalized carbon delivered CO2 uptake capacities of 4.48 and 3.0 mmol g(-1) under temperatures of 273 and 298 K, respectively, at 1 bar pressure with a good CO2/N-2 selectivity of 20.58 and CO2/CH4 selectivity of 3.83. The existence of nitrogen functional groups, high surface area, and micropore-rich porous structures may be the essential reasons behind superior electrode performance and CO2 capture capacity of the material. This work hopefully offers a simple development of N-doped carbon for effective energy storage and CO2 adsorption systems.
引用
收藏
页码:13556 / 13569
页数:14
相关论文
共 50 条
  • [21] Promising biomass-derived nitrogen-doped porous carbon for high performance supercapacitor
    Zhou, Jiangqi
    Wang, Min
    Li, Xin
    JOURNAL OF POROUS MATERIALS, 2019, 26 (01) : 99 - 108
  • [22] Novel porous nitrogen-doped carbon composite with CNTs/Cu-Ni as high-performance supercapacitor electrode
    Shan, Xuesong
    Song, Keru
    Huang, Siyu
    Wang, Jianwen
    Shi, Fengyue
    Zhao, Dongyu
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 920
  • [23] Dahlia-liked Carbon Nanohorns Decorated Graphene/Polyaniline Nanocomposite and Its Derived Nitrogen-doped Carbon for High-performance Supercapacitor
    Lu, Qiu-Feng
    Wang, Shuhao
    Zhou, Jing
    Duan, Fang-Fang
    Yang, Haijun
    Liu, Rui
    CHEMISTRYSELECT, 2019, 4 (24): : 7270 - 7277
  • [24] Nitrogen-doped asphaltene-based porous carbon nanosheet for carbon dioxide capture
    Qin, Fangfang
    Guo, Zhongya
    Wang, Jiashi
    Qu, Shijie
    Zuo, Pingping
    Shen, Wenzhong
    APPLIED SURFACE SCIENCE, 2019, 491 : 607 - 615
  • [25] Preparation of Nitrogen-Doped Cellulose-Based Porous Carbon and Its Carbon Dioxide Adsorption Properties
    Tan, Yifan
    Wang, Xiaoqiang
    Song, Shen
    Sun, Meijiao
    Xue, Yuhua
    Yang, Guangzhi
    ACS OMEGA, 2021, 6 (38): : 24814 - 24825
  • [26] Synthesis of High-Surface-Area Nitrogen-Doped Porous Carbon Microflowers and Their Efficient Carbon Dioxide Capture Performance
    Li, Yao
    Cao, Minhua
    CHEMISTRY-AN ASIAN JOURNAL, 2015, 10 (07) : 1496 - 1504
  • [27] Nitrogen-Doped Hierarchically Porous Carbon Materials with Enhanced Performance for Supercapacitor
    Zeng, Rong
    Tang, Xiannong
    Huang, Bingyu
    Yuan, Kai
    Chen, Yiwang
    CHEMELECTROCHEM, 2018, 5 (03): : 515 - 522
  • [28] Synthesis of nitrogen-doped mesoporous carbon for high-performance supercapacitors
    Liang, Kehan
    Wang, Wenjing
    Yu, Yifeng
    Liu, Lei
    Lv, Haijun
    Zhang, Yue
    Chen, Aibing
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (06) : 2776 - 2782
  • [29] Nitrogen-doped porous carbon nanosheets for high-performance supercapacitors
    Fan, Chenxu
    Tian, Yadong
    Bai, Shiyu
    Zhang, Chunyi
    Wu, Xiaoliang
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [30] Nitrogen-Doped Carbon Materials As Supercapacitor Electrodes: A Mini Review
    Jiang, Qian
    Cai, Yanqing
    Sang, Xiaoming
    Zhang, Qingxin
    Ma, Jun
    Chen, Xinggang
    ENERGY & FUELS, 2024, 38 (12) : 10542 - 10559