共 6 条
Hamiltonian description of the parametrized scalar field in bounded spatial regions
被引:4
|作者:
Barbero G, J. Fernando
[1
,3
]
Margalef-Bentabol, Juan
[1
,2
]
Villasenor, Eduardo J. S.
[2
,3
]
机构:
[1] CSIC, Inst Estruct Mat, Serrano 123, E-28006 Madrid, Spain
[2] Univ Carlos III Madrid, Grp Modelizac Simulac Numer & Matemat Ind, Avda Univ 30, E-28911 Leganes, Spain
[3] Univ Carlos III Madrid, Inst Gregorio Millan, Grp Teorias Campos & Fisica Estadist, Unidad Asociada,Inst Estruct Mat,CSIC, Avda Univ 30, E-28911 Leganes, Spain
关键词:
parametrized field theories;
Hamiltonian formulation;
bounded domains;
SPACE-TIME REGIONS;
GENERAL-RELATIVITY;
TENSOR FIELDS;
HYPERSPACE;
D O I:
10.1088/0264-9381/33/10/105002
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed Lorentzian background metric. We pay particular attention to the geometry of the infinite dimensional manifold of embeddings and the description of the relevant geometric objects: the symplectic form on the primary constraint submanifold and the Hamiltonian vector fields defined on it.
引用
收藏
页数:18
相关论文