Hamiltonian description of the parametrized scalar field in bounded spatial regions

被引:4
|
作者
Barbero G, J. Fernando [1 ,3 ]
Margalef-Bentabol, Juan [1 ,2 ]
Villasenor, Eduardo J. S. [2 ,3 ]
机构
[1] CSIC, Inst Estruct Mat, Serrano 123, E-28006 Madrid, Spain
[2] Univ Carlos III Madrid, Grp Modelizac Simulac Numer & Matemat Ind, Avda Univ 30, E-28911 Leganes, Spain
[3] Univ Carlos III Madrid, Inst Gregorio Millan, Grp Teorias Campos & Fisica Estadist, Unidad Asociada,Inst Estruct Mat,CSIC, Avda Univ 30, E-28911 Leganes, Spain
关键词
parametrized field theories; Hamiltonian formulation; bounded domains; SPACE-TIME REGIONS; GENERAL-RELATIVITY; TENSOR FIELDS; HYPERSPACE;
D O I
10.1088/0264-9381/33/10/105002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed Lorentzian background metric. We pay particular attention to the geometry of the infinite dimensional manifold of embeddings and the description of the relevant geometric objects: the symplectic form on the primary constraint submanifold and the Hamiltonian vector fields defined on it.
引用
收藏
页数:18
相关论文
共 6 条
  • [1] Hamiltonian dynamics of the parametrized electromagnetic field
    Barbero G, J. Fernando
    Margalef-Bentabol, Juan
    Villasenor, Eduardo J. S.
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (12)
  • [2] Nonlocal global symmetries of a free scalar field in a bounded spatial domain
    Balondo Iyela, Daddy
    Govaerts, Jan
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [3] Functional evolution of scalar fields in bounded one-dimensional regions
    Barbero G, J. Fernando
    Margalef-Bentabol, Juan
    Villasenor, Eduardo J. S.
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (06)
  • [4] Hamiltonian operator for loop quantum gravity coupled to a scalar field
    Alesci, E.
    Assanioussi, M.
    Lewandowski, J.
    Maekinen, I.
    PHYSICAL REVIEW D, 2015, 91 (12)
  • [5] Free scalar field theory on a Sobolev space over a bounded interval
    Barbero, J. Fernando G.
    GENERAL RELATIVITY AND GRAVITATION, 2024, 56 (06)
  • [6] Asymptotic structure of a massless scalar field and its dual two-form field at spatial infinity
    Henneaux, Marc
    Troessaert, Cedric
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)