The Bargmann transform on Lp(R)

被引:7
作者
Cao, Guangfu [1 ]
He, Li [2 ]
Hou, Shengzhao [3 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
关键词
Fock space; Bargmann transform; Fourier transform; Hausdorff-Young theorem; INTEGRAL TRANSFORM; ANALYTIC-FUNCTIONS; HILBERT-SPACE;
D O I
10.1016/j.jmaa.2018.08.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the mapping properties of the Bargmann transform B on L-p spaces of the real line. It is well known that B maps L-2 (R) isometrically onto the Fock space F-2. When 2 < p <= infinity, we show that B maps L-p(R) boundedly into the Fock space F-p and that the mapping is not onto. When 1 < p < 2, we show that B maps L-p(R) boundedly into the Fock space F-q, where 1/p + 1/q = 1, and that B does not map L-p(R) into F-p. There is no reasonable way to define the Bargmann transform on L-p (R) when 0 < p < 1. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:642 / 649
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 2001, Foundations of Time-Frequency Analysis, DOI DOI 10.1007/978-1-4612-0003-1
[4]  
Folland G., 1989, HARMONIC ANAL PHRASE
[5]  
Folland G.B., 1992, FOURIER ANAL ITAPP
[6]   Bounds on the Segal-Bargmann transform of Lp functions [J].
Hall, BC .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (06) :553-569
[7]  
Havin V., 2012, COMMUTATIVE HARMONIC
[8]   Toeplitz Operators on the Fock Space [J].
Isralowitz, Josh ;
Zhu, Kehe .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (04) :593-611
[9]  
Perelomov A., 1986, Generalized Coherent States and their Applications
[10]   Entropy and the Segal-Bargmann transform [J].
Sontz, SB .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (04) :2402-2417