Copper hydroxide nanostructure-modified carbon ionic liquid electrode as an efficient voltammetric sensor for detection of metformin: a theoretical and experimental study

被引:22
作者
Momeni, S. [1 ]
Farrokhnia, M. [1 ]
Karimi, S. [2 ]
Nabipour, I. [1 ]
机构
[1] Bushehr Univ Med Sci, Persian Gulf Biomed Sci Res Inst, Persian Gulf Marine Biotechnol Res Ctr, Bushehr 75147, Iran
[2] Persian Gulf Univ, Fac Sci, Dept Chem, Bushehr 75169, Iran
关键词
Cu(OH)(2) nanoparticles; Carbon ionic liquid electrode; Metformin; Sensor; HOMO and LUMO; ELECTROCHEMICAL OXIDATION; MASS-SPECTROMETRY; PLASMA; CHROMATOGRAPHY; HYDROCHLORIDE; NANOCOMPOSITE; TRANSITION; COMPLEXES; PRINCIPLE; HARDNESS;
D O I
10.1007/s13738-016-0816-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalytic oxidation of metformin (MET) was investigated at Cu(OH)(2) nanoparticle-modified carbon ionic liquid electrode (Cu(OH)(2)/CILE). This electrode exhibited excellent characteristic for the electrocatalytic oxidation of metformin at the potential of +0.6 V with good sensitivity and selectivity. The presence of Cu(OH)(2) nanostructures in the composite electrode leads to the appearance of oxidation peak of MET. Under optimal experimental conditions, the peak current response increased linearly with metformin concentration over the range of 1 A mu M-4 mM. The detection limit of the method is 0.5 A mu M. Moreover, the closer look was taken at the electronic properties of MET and its Cu (II) complexes such as frontier molecular orbital (HOMO and LUMO) and binding interaction energies using density functional theory. Effect of pH was also investigated at B3LYP/6-311++g** level. Theoretical results confirmed the experimental evidences of Cu (II) complexation. Therefore, Ease of preparation, wide linear range, low overpotential, high sensitivity and selectivity provide the possibility of applying this method for the detection of MET in biological samples.
引用
收藏
页码:1027 / 1035
页数:9
相关论文
共 45 条
  • [11] β-Cell function in type 2 diabetes
    Ferrannini, Ele
    Mari, Andrea
    [J]. METABOLISM-CLINICAL AND EXPERIMENTAL, 2014, 63 (10): : 1217 - 1227
  • [12] Frisch M.J., 2004, GAUSSIAN03 REVISION
  • [13] Determination of Metformin in Human Plasma and Urine by High-Performance Liquid Chromatography Using Small Sample Volume and Conventional Octadecyl Silane Column
    Gabr, Raniah Q.
    Padwal, Raj S.
    Brocks, Dion R.
    [J]. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES, 2010, 13 (04): : 486 - 494
  • [14] Differential pulse voltammetric determination of metformin using copper-loaded activated charcoal modified electrode
    Gholivand, Mohammad Bagher
    Mohammadi-Behzad, Leila
    [J]. ANALYTICAL BIOCHEMISTRY, 2013, 438 (01) : 53 - 60
  • [15] Glendening E. D., NBO VERSION 3 1, Patent No. [NBO3.1, 31]
  • [16] Near infra-red reflectance spectroscopic determination of metformin in tablets
    Habib, IHI
    Kamel, MS
    [J]. TALANTA, 2003, 60 (01) : 185 - 190
  • [17] Koopmans TA., 1933, Physica, V1, P104, DOI [https://doi.org/10.1016/S0031-8914(34)90011-2, DOI 10.1016/S0031-8914(34)90011-2, 10.1016/S0031-8914(34)90011-2]
  • [18] DEVELOPMENT OF THE COLLE-SALVETTI CORRELATION-ENERGY FORMULA INTO A FUNCTIONAL OF THE ELECTRON-DENSITY
    LEE, CT
    YANG, WT
    PARR, RG
    [J]. PHYSICAL REVIEW B, 1988, 37 (02): : 785 - 789
  • [19] DETERMINATION OF METFORMIN IN BIOLOGICAL SAMPLES
    LENNARD, MS
    CASEY, C
    TUCKER, GT
    WOODS, HF
    [J]. BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 1978, 6 (02) : 183 - 185
  • [20] Electrochemical oxidation and determination of ceftriaxone on a glassy carbon and carbon-nanotube-modified glassy carbon electrodes
    Majdi, S.
    Jabbari, A.
    Heli, H.
    Yadegari, H.
    Moosavi-Movahedi, A. A.
    Haghgoo, S.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (03) : 407 - 416