Demonstration of 640x512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array

被引:32
作者
Gunapala, S. D.
Bandara, S. V.
Hill, C. J.
Ting, D. Z.
Liu, J. K.
Rafol, S. B.
Blazejewski, E. R.
Mumolo, J. M.
Keo, S. A.
Krishna, S.
Chang, Y.-C.
Shott, C. A.
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Infravis Syst, Altadena, CA 91001 USA
[3] Univ New Mexico, Albuquerque, NM 87106 USA
[4] FLIR Syst Inc, Indigo Operat, Goleta, CA 93117 USA
[5] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
关键词
D O I
10.1016/j.infrared.2006.10.004
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have exploited the artificial atom-like properties of epitaxially grown self-assembled quantum dots (QDs) for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays (FPAs). QD infrared photodetectors (QDIPs) are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based FPAs. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR dot-in-a-well (DWELL) structures based on the InAs/InGaAs/GaAs material system. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. DWELL QDIPs were also experimentally shown to absorb both 45 degrees and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. The most recent devices exhibit peak responsivity out to 8.1 mu m. Peak detectivity of the 8.1 mu m devices has reached similar to 1 x 10(10) Jones at 77 K. Furthermore, we have fabricated the first long-wavelength 640 x 512 pixels QDIP imaging FPA. This QDIP FPA has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60 K operating temperature. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 16 条
[1]   Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature [J].
Bhattacharya, P ;
Su, XH ;
Chakrabarti, S ;
Ariyawansa, G ;
Perera, AGU .
APPLIED PHYSICS LETTERS, 2005, 86 (19) :1-3
[2]   High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity [J].
Chakrabarti, S ;
Stiff-Roberts, AD ;
Bhattacharya, P ;
Gunapala, S ;
Bandara, S ;
Rafol, SB ;
Kennerly, SW .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (05) :1361-1363
[3]  
Gunapala SD, 2000, SEMICONDUCT SEMIMET, V62, P197
[4]  
Gunapala SD, 2000, SENSOR MATER, V12, P327
[5]   Demonstration of a 256 x 256 middle-wavelength infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors [J].
Jiang, J ;
Mi, K ;
Tsao, S ;
Zhang, W ;
Lim, H ;
O'Sullivan, T ;
Sills, T ;
Razeghi, M ;
Brown, GJ ;
Tidrow, MZ .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2232-2234
[6]   High detectivity InAs quantum dot infrared photodetectors [J].
Kim, ET ;
Madhukar, A ;
Ye, ZM ;
Campbell, JC .
APPLIED PHYSICS LETTERS, 2004, 84 (17) :3277-3279
[7]   Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors [J].
Krishna, S ;
Forman, D ;
Annamalai, S ;
Dowd, P ;
Varangis, P ;
Tumolillo, T ;
Gray, A ;
Zilko, J ;
Sun, K ;
Liu, MG ;
Campbell, J ;
Carothers, D .
APPLIED PHYSICS LETTERS, 2005, 86 (19) :1-3
[8]   Quantum dots-in-a-well infrared photodetectors [J].
Krishna, S .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (13) :2142-2150
[9]   Intersublevel photoresponse of (In,Ga)As/GaAs quantum-dot photodetectors: Polarization and temperature dependence [J].
Pal, D ;
Chen, L ;
Towe, E .
APPLIED PHYSICS LETTERS, 2003, 83 (22) :4634-4636
[10]   Far-infrared photoconductivity in self-organized InAs quantum dots [J].
Phillips, J ;
Kamath, K ;
Bhattacharya, P .
APPLIED PHYSICS LETTERS, 1998, 72 (16) :2020-2022