Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy

被引:119
作者
Guo, Yugang [1 ]
Lei, Kewen [2 ]
Tang, Li [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Mat Sci & Engn, Lausanne, Switzerland
来源
FRONTIERS IN IMMUNOLOGY | 2018年 / 9卷
基金
瑞士国家科学基金会;
关键词
neoantigen; cancer vaccine; cancer immunotherapy; vaccine delivery; in vitro transcribed mRNA; synthetic long peptide; dendritic cell; nanoparticle; CANCER-IMMUNOTHERAPY; DENDRITIC CELLS; ANTITUMOR IMMUNITY; T-CELLS; ANTIGEN; RNA; MELANOMA; NANOPARTICLES; IMMUNOGENICITY; BIOMATERIALS;
D O I
10.3389/fimmu.2018.01499
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Cancer neoantigens derived from random somatic mutations in tumor tissue represent an attractive type of targets for the cancer immunotherapies including cancer vaccine. Vaccination against the tumor-specific neoantigens minimizes the potential induction of central and peripheral tolerance as well as the risk of autoimmunity. Neoantigen-based cancer vaccines have recently showed marked therapeutic potential in both preclinical and early-phase clinical studies. However, significant challenges remain in the effective and faithful identification of immunogenic neoepitopes and the efficient and safe delivery of the subunit vaccine components for eliciting potent and robust anticancer T cell responses. In this mini review, we provide a brief overview of the recent advances in the development of neoantigen-based cancer vaccines focusing on various vaccine delivery strategies for targeting and modulating antigen-presenting cells. We discuss current delivery approaches, including direct injection, ex vivo-pulsed dendritic cell vaccination, and biomaterial-assisted vaccination for enhancing the efficiency of neoantigen vaccines and present a perspective on future directions.
引用
收藏
页数:8
相关论文
共 63 条
[1]   Personalized neoantigen vaccines: A new approach to cancer immunotherapy [J].
Aldous, Amanda R. ;
Dong, Jesse Z. .
BIOORGANIC & MEDICINAL CHEMISTRY, 2018, 26 (10) :2842-2849
[2]   Signatures of mutational processes in human cancer [J].
Alexandrov, Ludmil B. ;
Nik-Zainal, Serena ;
Wedge, David C. ;
Aparicio, Samuel A. J. R. ;
Behjati, Sam ;
Biankin, Andrew V. ;
Bignell, Graham R. ;
Bolli, Niccolo ;
Borg, Ake ;
Borresen-Dale, Anne-Lise ;
Boyault, Sandrine ;
Burkhardt, Birgit ;
Butler, Adam P. ;
Caldas, Carlos ;
Davies, Helen R. ;
Desmedt, Christine ;
Eils, Roland ;
Eyfjord, Jorunn Erla ;
Foekens, John A. ;
Greaves, Mel ;
Hosoda, Fumie ;
Hutter, Barbara ;
Ilicic, Tomislav ;
Imbeaud, Sandrine ;
Imielinsk, Marcin ;
Jaeger, Natalie ;
Jones, David T. W. ;
Jones, David ;
Knappskog, Stian ;
Kool, Marcel ;
Lakhani, Sunil R. ;
Lopez-Otin, Carlos ;
Martin, Sancha ;
Munshi, Nikhil C. ;
Nakamura, Hiromi ;
Northcott, Paul A. ;
Pajic, Marina ;
Papaemmanuil, Elli ;
Paradiso, Angelo ;
Pearson, John V. ;
Puente, Xose S. ;
Raine, Keiran ;
Ramakrishna, Manasa ;
Richardson, Andrea L. ;
Richter, Julia ;
Rosenstiel, Philip ;
Schlesner, Matthias ;
Schumacher, Ton N. ;
Span, Paul N. ;
Teague, Jon W. .
NATURE, 2013, 500 (7463) :415-+
[3]  
Ali OA, 2009, NAT MATER, V8, P151, DOI [10.1038/NMAT2357, 10.1038/nmat2357]
[4]   Intracellular mechanisms of antigen cross presentation in dendritic cells [J].
Amigorena, Sebastian ;
Savina, Ariel .
CURRENT OPINION IN IMMUNOLOGY, 2010, 22 (01) :109-117
[5]   Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes [J].
Bentzen, Amalie Kai ;
Marquard, Andrea Marion ;
Lyngaa, Rikke ;
Saini, Sunil Kumar ;
Ramskov, Sofie ;
Donia, Marco ;
Such, Lina ;
Furness, Andrew J. S. ;
McGranahan, Nicholas ;
Rosenthal, Rachel ;
Straten, Per Thor ;
Szallasi, Zoltan ;
Svane, Inge Marie ;
Swanton, Charles ;
Quezada, Sergio A. ;
Jakobsen, Soren Nyboe ;
Eklund, Aron Charles ;
Hadrup, Sine Reker .
NATURE BIOTECHNOLOGY, 2016, 34 (10) :1037-1045
[6]   Characterizing neoantigens for personalized cancer immunotherapy [J].
Capietto, Aude-Helene ;
Jhunjhunwala, Suchit ;
Delamarre, Lelia .
CURRENT OPINION IN IMMUNOLOGY, 2017, 46 :58-65
[7]   A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells [J].
Carreno, Beatriz M. ;
Magrini, Vincent ;
Becker-Hapak, Michelle ;
Kaabinejadian, Saghar ;
Hundal, Jasreet ;
Petti, Allegra A. ;
Ly, Amy ;
Lie, Wen-Rong ;
Hildebrand, William H. ;
Mardis, Elaine R. ;
Linette, Gerald P. .
SCIENCE, 2015, 348 (6236) :803-808
[8]   Exploiting the Mutanome for Tumor Vaccination [J].
Castle, John C. ;
Kreiter, Sebastian ;
Diekmann, Jan ;
Loewer, Martin ;
Van de Roemer, Niels ;
de Graaf, Jos ;
Selmi, Abderraouf ;
Diken, Mustafa ;
Boegel, Sebastian ;
Paret, Claudia ;
Koslowski, Michael ;
Kuhn, Andreas N. ;
Britten, Cedrik M. ;
Huber, Christoph ;
Tuereci, Oezlem ;
Sahin, Ugur .
CANCER RESEARCH, 2012, 72 (05) :1081-1091
[9]   Dendritic cell targeted vaccines: Recent progresses and challenges [J].
Chen, Pengfei ;
Liu, Xinsheng ;
Sun, Yuefeng ;
Zhou, Peng ;
Wang, Yonglu ;
Zhang, Yongguang .
HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2016, 12 (03) :612-622
[10]   Clinically applicable procedure for gene delivery to fetal gut by ultrasound-guided gastric injection: Toward prenatal prevention of early-onset intestinal diseases [J].
David, A. L. ;
Peebles, D. M. ;
Gregory, L. ;
Waddington, S. N. ;
Themis, M. ;
Weisz, B. ;
Ruthe, A. ;
Lawrence, L. ;
Cook, T. ;
Rodeck, C. H. ;
Coutelle, C. .
HUMAN GENE THERAPY, 2006, 17 (07) :767-779