Bright Soliton Solutions for Time Fractional Korteweg-de Vries Equation

被引:2
|
作者
Ozkan, Erdogan Mehmet [1 ]
Ozkan, Ayten [1 ]
机构
[1] Yildiz Tech Univ, Dept Math, Istanbul, Turkey
关键词
GORDON EQUATIONS; KDV; TRANSFORM; EVOLUTION; SYSTEM;
D O I
10.1063/5.0040280
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, He's semi-inverse variation method and the ansatz method with the modified Riemann-Liouville derivative are used to construct the exact solutions for time fractional Korteweg-de Vries (KdV) equation. The fractional KdV equation is transformed to another non-linear differential equation by travelling wave transformations and then these two methods are applied to find the solution.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [32] New numerical solutions of fractional-order Korteweg-de Vries equation
    Inc, Mustafa
    Parto-Haghighi, Mohammad
    Akinlar, Mehmet Ali
    Chu, Yu-Ming
    RESULTS IN PHYSICS, 2020, 19
  • [33] On persistence properties in weighted spaces for solutions of the fractional Korteweg-de Vries equation
    Riano, Oscar
    NONLINEARITY, 2021, 34 (07) : 4604 - 4660
  • [34] Large time asymptotics of solutions to the generalized Korteweg-de Vries equation
    Hayashi, N
    Naumkin, PI
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (01) : 110 - 136
  • [35] SOLITON AMPLIFICATION IN THE KORTEWEG-DE VRIES EQUATION BY MULTIPLICATIVE FORCING
    Westdorp, Rik willem simon
    Hupkes, Hermen jan
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025,
  • [36] Multiple soliton solutions and other solutions of a variable-coefficient Korteweg-de Vries equation
    Mabenga, C.
    Muatjetjeja, B.
    Motsumi, T. G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (09):
  • [37] Soliton surfaces for complex modified Korteweg-de Vries equation
    Bauyrzhan, Gulnur
    Yesmakhanova, Kuralay
    Yerzhanov, Koblandy
    Ybyraiymova, Sveta
    8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
  • [38] Dispersive Hydrodynamics of Soliton Condensates for the Korteweg-de Vries Equation
    Congy, T.
    El, G. A.
    Roberti, G.
    Tovbis, A.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (06)
  • [39] Numerical Studying of Soliton in the Korteweg-de Vries (KdV) Equation
    Yuliawati, Lia
    Budhi, Wono Setya
    Adytia, Didit
    6TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES, 2019, 1127
  • [40] Large time behavior of solutions for the modified Korteweg-de Vries equation
    Hayashi, N
    Naumkin, PI
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (08) : 395 - 418