Optimizing Age of Information Through Aerial Reconfigurable Intelligent Surfaces: A Deep Reinforcement Learning Approach

被引:131
作者
Samir, Moataz [1 ]
Elhattab, Mohamed [2 ]
Assi, Chadi [1 ]
Sharafeddine, Sanaa [3 ]
Ghrayeb, Ali [4 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 1M8, Canada
[2] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
[3] Lebanese Amer Univ Beirut, Beirut 11022801, Lebanon
[4] Texas A&M Univ Qatar, Elect & Comp Engn Dept, Doha 23874, Qatar
关键词
Relays; Optimization; Wireless networks; Reliability; Internet of Things; Fading channels; Delays; AoI; IoT; PPO; RIS; scheduling; UAV altitude; UAVS;
D O I
10.1109/TVT.2021.3063953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate the benefits of integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surface (RIS) elements to passively relay information sampled by Internet of Things devices (IoTDs) to the base station (BS). In order to maintain the freshness of relayed information, an optimization problem with the objective of minimizing the expected sum Age-of-Information (AoI) is formulated to optimize the altitude of the UAV, the communication schedule, and phases-shift of RIS elements. In the absence of prior knowledge of the activation pattern of the IoTDs, proximal policy optimization algorithm is developed to solve this mixed-integer non-convex optimization problem. Numerical results show that our proposed algorithm outperforms all others in terms of AoI.
引用
收藏
页码:3978 / 3983
页数:6
相关论文
共 17 条
[1]  
3GPP, 2011, T 37868 VER 1100, P1719
[2]   A Hybrid Relay and Intelligent Reflecting Surface Network and Its Ergodic Performance Analysis [J].
Abdullah, Zaid ;
Chen, Gaojie ;
Lambotharan, Sangarapillai ;
Chambers, Jonathon A. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (10) :1653-1657
[3]   Interference Management for Cellular-Connected UAVs: A Deep Reinforcement Learning Approach [J].
Challita, Ursula ;
Saad, Walid ;
Bettstetter, Christian .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (04) :2125-2140
[4]  
Elhattab M., 2020, ARXIV210101307
[5]   Reconfigurable Intelligent Surface Assisted Coordinated Multipoint in Downlink NOMA Networks [J].
Elhattab, Mohamed ;
Arfaoui, Mohamed-Amine ;
Assi, Chadi ;
Ghrayeb, Ali .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (02) :632-636
[6]   Reconfigurable Intelligent Surface Assisted UAV Communication: Joint Trajectory Design and Passive Beamforming [J].
Li, Sixian ;
Duo, Bin ;
Yuan, Xiaojun ;
Liang, Ying-Chang ;
Di Renzo, Marco .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (05) :716-720
[7]   Distributed and Energy-Efficient Mobile Crowdsensing with Charging Stations by Deep Reinforcement Learning [J].
Liu, Chi Harold ;
Dai, Zipeng ;
Zhao, Yinuo ;
Crowcroft, Jon ;
Wu, Dapeng ;
Leung, Kin K. .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (01) :130-146
[8]  
Long H, 2020, ARXIV PREPRINT ARXIV
[9]   Mobile Unmanned Aerial Vehicles (UAVs) for Energy-Efficient Internet of Things Communications [J].
Mozaffari, Mohammad ;
Saad, Walid ;
Bennis, Mehdi ;
Debbah, Merouane .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (11) :7574-7589
[10]   Online Altitude Control and Scheduling Policy for Minimizing AoI in UAV-Assisted IoT Wireless Networks [J].
Samir, Moataz ;
Assi, Chadi ;
Sharafeddine, Sanaa ;
Ghrayeb, Ali .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (07) :2493-2505