Counting degree sequences of spanning trees in bipartite graphs: A graph-theoretic proof
被引:0
作者:
Fischer, Anja
论文数: 0引用数: 0
h-index: 0
机构:
TU Dortmund Univ, Fac Business & Econ, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund Univ, Fac Business & Econ, Vogelpothsweg 87, D-44227 Dortmund, Germany
Fischer, Anja
[1
]
Fischer, Frank
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Gutenberg Univ Mainz, Inst Comp Sci, Mainz, GermanyTU Dortmund Univ, Fac Business & Econ, Vogelpothsweg 87, D-44227 Dortmund, Germany
Fischer, Frank
[2
]
机构:
[1] TU Dortmund Univ, Fac Business & Econ, Vogelpothsweg 87, D-44227 Dortmund, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Comp Sci, Mainz, Germany
Given a bipartite graph G = (S (boolean OR) over dot T, E) with bipartition S, T each spanning tree in G has a degree sequence on S and one on T. Lohne and Rudloff showed that the number of possible degree sequences on S equals the number of possible degree sequences on T. Their proof uses a non-trivial characterization of degree sequences by G-draconian sequences based on polyhedral results of Postnikov. In this paper, we give a purely graph-theoretic proof of their result.
引用
收藏
页码:230 / 236
页数:7
相关论文
共 4 条
[1]
KABANOV Y., 1999, Finance Stoch., V3, P237, DOI DOI 10.1007/S007800050061