Counting degree sequences of spanning trees in bipartite graphs: A graph-theoretic proof

被引:0
作者
Fischer, Anja [1 ]
Fischer, Frank [2 ]
机构
[1] TU Dortmund Univ, Fac Business & Econ, Vogelpothsweg 87, D-44227 Dortmund, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Comp Sci, Mainz, Germany
关键词
bipartite graphs; degree sequences; spanning trees;
D O I
10.1002/jgt.22449
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a bipartite graph G = (S (boolean OR) over dot T, E) with bipartition S, T each spanning tree in G has a degree sequence on S and one on T. Lohne and Rudloff showed that the number of possible degree sequences on S equals the number of possible degree sequences on T. Their proof uses a non-trivial characterization of degree sequences by G-draconian sequences based on polyhedral results of Postnikov. In this paper, we give a purely graph-theoretic proof of their result.
引用
收藏
页码:230 / 236
页数:7
相关论文
共 4 条
[1]  
KABANOV Y., 1999, Finance Stoch., V3, P237, DOI DOI 10.1007/S007800050061
[2]   On the dual of the solvency cone [J].
Loehne, Andreas ;
Rudloff, Birgit .
DISCRETE APPLIED MATHEMATICS, 2015, 186 :176-185
[3]   Permutohedra, Associahedra, and Beyond [J].
Postnikov, Alexander .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (06) :1026-1106