Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte

被引:143
作者
Taylor, Nathan J. [1 ]
Stangeland-Molo, Sandra [1 ]
Haslam, Catherine G. [1 ]
Sharafi, Asma [1 ]
Thompson, Travis [1 ]
Wang, Michael [1 ]
Garcia-Mendez, Regina [1 ]
Sakamoto, Jeff [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
关键词
Critical current density; Solid electrolytes; Dendrite; Battery; Li-ion; STATE ELECTROLYTE; LITHIUM; BATTERIES; TEMPERATURE; CHALLENGES; PREVENTION; RESISTANCE; STABILITY; KINETICS;
D O I
10.1016/j.jpowsour.2018.06.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Replacing state-of-the-art graphite with metallic Li anodes could dramatically increase the energy density of Li-ion technology. However, efforts to achieve uniform Li plating and stripping in conventional liquid electrolytes have had limited success. An alternative approach is to use a solid electrolyte to stabilize the Li interface during cycling. One of the most promising solid electrolytes is Li7La3Zr2O12, which has high ionic conductivity at room temperature, high shear modulus and chemical and electrochemical stability against Li. Despite these properties, Li filament propagation has been observed through LLZO at current densities below what is practical. By combining recent achievements in reducing interface resistance and optimizing microstructure, we demonstrate Li cycling at current densities competitive with Li-ion. Li|LLZO|Li cells are capable of cycling at up to 0.9 +/- 0.7 mA cm(-2), 3.8 +/- 0.9 mA cm(-2), and 6.0 +/- 0.7 mA cm(-2 )at room temperature, 40 and 60 degrees C, respectively. Extended stability is shown in Li plating/stripping tests that passed 3 mAh cm(-2) charge per cycle for a cumulative capacity of 702 mAh cm(-2) using a 1 mA cm(-2) current density. These results demonstrate that solid-state batteries using metallic Li anodes can approach charge/discharge rates and cycling stability comparable to SOA Li-ion.
引用
收藏
页码:314 / 318
页数:5
相关论文
共 23 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]   Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte [J].
Basappa, Rajendra Hongahally ;
Ito, Tomoko ;
Morimura, Takao ;
Bekarevich, Raman ;
Mitsuishi, Kazutaka ;
Yamada, Hirotoshi .
JOURNAL OF POWER SOURCES, 2017, 363 :145-152
[3]   Contact between Garnet-Type Solid Electrolyte and Lithium Metal Anode: Influence on Charge Transfer Resistance and Short Circuit Prevention [J].
Basappa, Rajendra Hongahally ;
Ito, Tomoko ;
Yamada, Hirotoshi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :A666-A671
[4]   Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte [J].
Cheng, Eric Jianfeng ;
Sharafi, Asma ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 223 :85-91
[5]   Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes [J].
Cheng, Lei ;
Chen, Wei ;
Kunz, Martin ;
Persson, Kristin ;
Tamura, Nobumichi ;
Chen, Guoying ;
Doeff, Marca .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (03) :2073-2081
[6]   Crystal Chemistry and Stability of "Li7La3Zr2O12" Garnet: A Fast Lithium-Ion Conductor [J].
Geiger, Charles A. ;
Alekseev, Evgeny ;
Lazic, Biljana ;
Fisch, Martin ;
Armbruster, Thomas ;
Langner, Ramona ;
Fechtelkord, Michael ;
Kim, Namjun ;
Pettke, Thomas ;
Weppner, Werner .
INORGANIC CHEMISTRY, 2011, 50 (03) :1089-1097
[7]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]
[8]   Simple Method to Determine Electronic and Ionic Components of the Conductivity in Mixed Conductors A Review [J].
Huggins, R. A. .
IONICS, 2002, 8 (3-4) :300-313
[9]  
Irvine J. T. S., 1990, Advanced Materials, V2, P132, DOI 10.1002/adma.19900020304
[10]   Garnet Solid Electrolyte Protected Li-Metal Batteries [J].
Liu, Boyang ;
Gong, Yunhui ;
Fu, Kun ;
Han, Xiaogang ;
Yao, Yonggang ;
Pastel, Glenn ;
Yang, Chunpeng ;
Xie, Hua ;
Wachsman, Eric D. ;
Hu, Liangbing .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) :18809-18815