Using high-throughput barcode sequencing to efficiently map connectomes

被引:24
|
作者
Peikon, Ian D. [1 ,2 ]
Kebschull, Justus M. [1 ,2 ]
Vagin, Vasily V. [2 ]
Ravens, Diana I. [2 ]
Sun, Yu-Chi [2 ]
Brouzes, Eric [3 ,4 ]
Correa, Ivan R., Jr. [5 ]
Bressan, Dario [1 ,2 ,6 ]
Zador, Anthony M. [2 ]
机构
[1] Cold Spring Harbor Lab, Watson Sch Biol Sci, Cold Spring Harbor, NY 11724 USA
[2] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[3] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[5] New England Biolabs Inc, Ipswich, MA 01938 USA
[6] Univ Cambridge, Li Ka Shing Ctr, Canc Res UK Cambridge Inst, Cambridge CB2 0RE, England
基金
美国国家卫生研究院;
关键词
IN-VIVO; CHROMOSOME CONFORMATION; LIVING CELLS; SYNAPSES; RECONSTRUCTION; CONNECTIVITY; RESOLUTION; MICROSCOPY; NEUREXINS; SYSTEM;
D O I
10.1093/nar/gkx292
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] DNA sequencing in high-throughput neuroanatomy
    Kebschull, Justus M.
    JOURNAL OF CHEMICAL NEUROANATOMY, 2019, 100
  • [2] High-Throughput Sequencing Technologies
    Reuter, Jason A.
    Spacek, Damek V.
    Snyder, Michael P.
    MOLECULAR CELL, 2015, 58 (04) : 586 - 597
  • [3] Decoding neural transcriptomes and epigenomes via high-throughput sequencing
    Shin, Jaehoon
    Ming, Guo-li
    Song, Hongjun
    NATURE NEUROSCIENCE, 2014, 17 (11) : 1463 - 1475
  • [4] Identification and analysis of microRNAs in Botryococcus braunii using high-throughput sequencing
    Deng, Xiang-Yuan
    Hu, Xiao-Li
    Li, Da
    Wang, Ling
    Cheng, Jie
    Gao, Kun
    AQUATIC BIOLOGY, 2017, 26 : 41 - 48
  • [5] High-Throughput Sequencing of a South American Amerindian
    Ribeiro-dos-Santos, Andre M.
    Santana de Souza, Jorge Estefano
    Almeida, Renan
    Alencar, Dayse O.
    Barbosa, Maria Silvanira
    Gusmao, Leonor
    Silva, Wilson A., Jr.
    de Souza, Sandro J.
    Silva, Artur
    Ribeiro-dos-Santos, Andrea
    Darnet, Sylvain
    Santos, Sidney
    PLOS ONE, 2013, 8 (12):
  • [6] High-throughput bisulfite sequencing in mammalian genomes
    Smith, Zachary D.
    Gu, Hongcang
    Bock, Christoph
    Gnirke, Andreas
    Meissner, Alexander
    METHODS, 2009, 48 (03) : 226 - 232
  • [7] Mapping platinum adducts on yeast ribosomal RNA using high-throughput sequencing
    Plakos, Kory
    DeRose, Victoria J.
    CHEMICAL COMMUNICATIONS, 2017, 53 (95) : 12746 - 12749
  • [8] Determination of tRNA aminoacylation levels by high-throughput sequencing
    Evans, Molly E.
    Clark, Wesley C.
    Zheng, Guanqun
    Pan, Tao
    NUCLEIC ACIDS RESEARCH, 2017, 45 (14) : E133
  • [9] Connecting genotype to phenotype in the era of high-throughput sequencing
    Henry, Christopher S.
    Overbeek, Ross
    Xia, Fangfang
    Best, Aaron A.
    Glass, Elizabeth
    Gilbert, Jack
    Larsen, Peter
    Edwards, Rob
    Disz, Terry
    Meyer, Folker
    Vonstein, Veronika
    DeJongh, Matthew
    Bartels, Daniela
    Desai, Narayan
    D'Souza, Mark
    Devoid, Scott
    Keegan, Kevin P.
    Olson, Robert
    Wilke, Andreas
    Wilkening, Jared
    Stevens, Rick L.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2011, 1810 (10): : 967 - 977
  • [10] The Role of High Performance, Grid and Cloud Computing in High-Throughput Sequencing
    Lightbody, Gaye
    Browne, Fiona
    Zheng, Huiru
    Haberland, Valeriia
    Blayney, Jaine
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 890 - 895