GaSb nanocrystals grown by solid phase epitaxy and embedded into monocrystalline silicon

被引:8
|
作者
Chusovitin, E. A. [1 ]
Goroshko, D. L. [1 ,2 ]
Dotsenko, S. A. [1 ,2 ]
Chusovitina, S. V. [1 ]
Shevlyagin, A. V. [1 ]
Galkin, N. G. [1 ,2 ]
Gutakovskii, A. K. [3 ,4 ]
机构
[1] Inst Automat & Control Proc FEB RAS, 5 Radio St, Vladivostok 690041, Russia
[2] Far Eastern Fed Univ, Sch Nat Sci, 8 Sukhanova St, Vladivostok 690950, Russia
[3] Rzhanov Inst Semicond Phys SB RAS, 13 Lavrentieva Ave, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, 2 Pirogova St, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Nanocrystalline materials; Crystal structure; Heteroepitaxy; Transmission electron microscopy; GaSb; TRANSMISSION ELECTRON-MICROSCOPY; SI; 001; SUBSTRATE; MORPHOLOGY; SURFACES; ISLANDS; SI(100); LAYERS; STAGE;
D O I
10.1016/j.scriptamat.2017.04.004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A double-layer heterostructure with embedded into single-crystal silicon matrix nanocrystals (NCs) of gallium antimonide (GaSb) was grown. The NCs were formed by solid phase epitaxy method using 1.6-nm-thick Ga-Sb stoichiometric mixture and annealing at a temperature range of 200-500 degrees C. The embedded NCs have a concentration of about 5.4 x 10(10) cm(-2), a mean height of 8.6 nm and a mean lateral dimension of 19.2 nm. A stress induced inside the NCs owing to lattice mismatch between Si and GaSb was fully relaxed by edge dislocations at Si/GaSb interface. All the NCs have identical epitaxial relationship: GaSb(111)parallel to Si(111), GaSb[1 (1) over bar0]parallel to Si[1 (1) over bar0]. (C) 2017 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
引用
收藏
页码:83 / 86
页数:4
相关论文
共 50 条
  • [31] GaAs Based InAs/GaSb Superlattice Short Wavelength Infrared Detectors Grown by Molecular Beam Epitaxy
    Tang Bao
    Xu Ying-Qiang
    Zhou Zhi-Qiang
    Hao Rui-Ting
    Wang Guo-Wei
    Ren Zheng-Wei
    Niu Zhi-Chuan
    CHINESE PHYSICS LETTERS, 2009, 26 (02)
  • [32] Hydrogen and inert species in solid phase epitaxy
    Lieten, R. R.
    Degroote, S.
    Clemente, F.
    Leys, M.
    Borghs, G.
    APPLIED PHYSICS LETTERS, 2010, 96 (05)
  • [33] Anisotropic carrier transport properties in layered cobaltate epitaxial films grown by reactive solid-phase epitaxy
    Sugiura, Kenji
    Ohta, Hiromichi
    Nakagawa, Shin-ichi
    Huang, Rong
    Ikuhara, Yuichi
    Nomura, Kenji
    Hosono, Hideo
    Koumoto, Kunihito
    APPLIED PHYSICS LETTERS, 2009, 94 (15)
  • [34] Temperature dependence of atomic ordering and composition modulation in InAsSbBi grown by molecular beam epitaxy on GaSb substrates
    Kosireddy, R. R.
    Schaefer, S. T.
    Webster, P. T.
    Milosavljevic, M. S.
    Johnson, S. R.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 859
  • [35] GaSb/ZnTe double-heterostructures grown using molecular beam epitaxy
    Fan, J.
    Ouyang, L.
    Liu, X.
    Furdyna, J. K.
    Smith, D. J.
    Zhang, Y. -H.
    JOURNAL OF CRYSTAL GROWTH, 2013, 371 : 122 - 125
  • [36] CdSe/CdTe type-II superlattices grown on GaSb (001) substrates by molecular beam epitaxy
    Li, Jing-Jing
    Liu, Xinyu
    Liu, Shi
    Wang, Shumin
    Smith, David J.
    Ding, Ding
    Johnson, Shane R.
    Furdyna, Jacek K.
    Zhang, Yong-Hang
    APPLIED PHYSICS LETTERS, 2012, 100 (12)
  • [37] GaSb/GaAs quantum-ring-with-dot structures grown by droplet epitaxy
    Kunrugsa, Maetee
    Panyakeow, Somsak
    Ratanathammaphan, Somchai
    JOURNAL OF CRYSTAL GROWTH, 2015, 416 : 73 - 77
  • [38] Phase formation in iron silicide nanodots grown by reactive deposition epitaxy on Si(111)
    Gonzalez, J. C.
    Miquita, D. R.
    da Silva, M. I. N.
    Magalhaes-Paniago, R.
    Moreira, M. V. B.
    de Oliveira, A. G.
    PHYSICAL REVIEW B, 2010, 81 (11):
  • [39] Ferromagnet/semiconductor/ferromagnet hybrid trilayers grown using solid-phase epitaxy
    Gaucher, S.
    Jenichen, B.
    Herfort, J.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2018, 33 (10)
  • [40] Surface morphology of GaSb grown on (111)B GaAs by molecular beam epitaxy
    Hall, E
    Kroemer, H
    JOURNAL OF CRYSTAL GROWTH, 1999, 203 (03) : 297 - 301