Atomistic model of the spider silk nanostructure

被引:80
|
作者
Keten, Sinan [1 ]
Buehler, Markus J. [1 ,2 ,3 ]
机构
[1] MIT, Lab Atomist & Mol Mech, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
[2] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Ctr Computat Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
biomechanics; molecular biophysics; molecular configurations; molecular dynamics method; polymers; proteins; MOLECULAR-DYNAMICS SIMULATIONS; MAJOR AMPULLATE SILK; DRAGLINE SILK; SECONDARY STRUCTURE; NEPHILA-CLAVIPES; ORIENTATION; PROTEINS; ELASTICITY; CRYSTALS; STRENGTH;
D O I
10.1063/1.3385388
中图分类号
O59 [应用物理学];
学科分类号
摘要
Spider silk is an ultrastrong and extensible self-assembling biopolymer that outperforms the mechanical characteristics of many synthetic materials including steel. Here we report atomic-level structures that represent aggregates of MaSp1 proteins from the N. Clavipes silk sequence based on a bottom-up computational approach using replica exchange molecular dynamics. We discover that poly-alanine regions predominantly form distinct and orderly beta-sheet crystal domains while disorderly structures are formed by poly-glycine repeats, resembling 3(1)-helices. These could be the molecular source of the large semicrystalline fraction observed in silks, and also form the basis of the so-called "prestretched" molecular configuration. Our structures are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Identification and synthesis of novel biomaterials based on spider structural silk fibers
    Hsia, Yang
    Gnesa, Eric
    Tang, Simon
    Jeffery, Felicia
    Geurts, Paul
    Zhao, Liang
    Franz, Andreas
    Vierra, Craig
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 105 (02): : 301 - 309
  • [22] The study of the elasticity of spider dragline silk with liquid crystal model
    Cui, Lin-ying
    Liu, Fei
    Ou-Yang, Zhong-can
    THIN SOLID FILMS, 2009, 518 (02) : 735 - 738
  • [23] Functionalisation of recombinant spider silk with conjugated polyelectrolytes
    Muller, Christian
    Jansson, Ronnie
    Elfwing, Anders
    Askarieh, Glareh
    Karlsson, Roger
    Hamedi, Mahiar
    Rising, Anna
    Johansson, Jan
    Inganas, Olle
    Hedhammar, My
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (09) : 2909 - 2915
  • [24] The evolution of complex biomaterial performance: The case of spider silk
    Swanson, Brook O.
    Anderson, Stuart P.
    DiGiovine, Caitlin
    Ross, Rachel N.
    Dorsey, John P.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2009, 49 (01) : 21 - 31
  • [25] Multilateral characterization of recombinant spider silk in thermal degradation
    Dao, Anh T. N.
    Nakayama, K.
    Shimokata, J.
    Taniike, T.
    POLYMER CHEMISTRY, 2017, 8 (06) : 1049 - 1060
  • [26] Structural characterization and functionalization of engineered spider silk films
    Spiess, Kristina
    Wohlrab, Stefanie
    Scheibel, Thomas
    SOFT MATTER, 2010, 6 (17) : 4168 - 4174
  • [27] Spider Silk Violin Strings with a Unique Packing Structure Generate a Soft and Profound Timbre
    Osaki, Shigeyoshi
    PHYSICAL REVIEW LETTERS, 2012, 108 (15)
  • [28] Energy Harvesters Incorporating Silk from the Taiwan-Native Spider Nephila pilipes
    Pan, Cheng-Tang
    Yen, Chung-Kun
    Hsieh, Ming-Chun
    Wang, Shao-Yu
    Chien, Chi-Hui
    Huang, Jacob Chih-Ching
    Lin, Liwei
    Shiue, Yow-Ling
    Kuo, Shiao-Wei
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (10): : 5627 - 5635
  • [29] Nephila clavipes Flagelliform Silk-Like GGX Motifs Contribute to Extensibility and Spacer Motifs Contribute to Strength in Synthetic Spider Silk Fibers
    Adrianos, Sherry L.
    Teule, Florence
    Hinman, Michael B.
    Jones, Justin A.
    Weber, Warner S.
    Yarger, Jeffery L.
    Lewis, Randolph V.
    BIOMACROMOLECULES, 2013, 14 (06) : 1751 - 1760
  • [30] Protein unfolding versus β-sheet separation in spider silk nanocrystals
    Alam, Parvez
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2014, 5 (01)