A crossbar network for silicon quantum dot qubits

被引:208
作者
Li, Ruoyu [1 ,2 ]
Petit, Luca [1 ,2 ]
Franke, David P. [1 ,2 ]
Dehollain, Juan Pablo [1 ,2 ]
Helsen, Jonas [1 ]
Steudtner, Mark [1 ,3 ]
Thomas, Nicole K. [4 ]
Yoscovits, Zachary R. [4 ]
Singh, Kanwal J. [4 ]
Wehner, Stephanie [1 ]
Vandersypen, Lieven M. K. [1 ,2 ,4 ]
Clarke, James S. [4 ]
Veldhorst, Menno [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Univ Technol, Kavli Inst Nanosci, POB 5046, NL-2600 GA Delft, Netherlands
[3] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[4] Intel Corp, Components Res, 2501 Northwest 229th Ave, Hillsboro, OR 97124 USA
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 07期
基金
欧洲研究理事会;
关键词
COMPUTATION;
D O I
10.1126/sciadv.aar3960
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The spin states of single electrons in gate-defined quantum dots satisfy crucial requirements for a practical quantum computer. These include extremely long coherence times, high-fidelity quantum operation, and the ability to shuttle electrons as a mechanism for on-chip flying qubits. To increase the number of qubits to the thousands or millions of qubits needed for practical quantum information, we present an architecture based on shared control and a scalable number of lines. Crucially, the control lines define the qubit grid, such that no local components are required. Our design enables qubit coupling beyond nearest neighbors, providing prospects for nonplanar quantum error correction protocols. Fabrication is based on a three-layer design to define qubit and tunnel barrier gates. We show that a double stripline on top of the structure can drive high-fidelity single-qubit rotations. Self-aligned inhomogeneous magnetic fields induced by direct currents through superconducting gates enable qubit address ability and readout. Qubit coupling is based on the exchange interaction, and we show that parallel two-qubit gates can be performed at the detuning-noise insensitive point. While the architecture requires a high level of uniformity in the materials and critical dimensions to enable shared control, it stands out for its simplicity and provides prospects for large-scale quantum computation in the near future.
引用
收藏
页数:10
相关论文
共 44 条
[1]  
[Anonymous], 2011, ARXIV11085738
[2]  
[Anonymous], ARXIV170803445
[3]  
Baart TA, 2016, NAT NANOTECHNOL, V11, P330, DOI [10.1038/NNANO.2015.291, 10.1038/nnano.2015.291]
[4]   Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures [J].
Bartolf, H. ;
Engel, A. ;
Schilling, A. ;
Il'in, K. ;
Siegel, M. ;
Huebers, H. -W. ;
Semenov, A. .
PHYSICAL REVIEW B, 2010, 81 (02)
[5]   Efficient distributed quantum computing [J].
Beals, Robert ;
Brierley, Stephen ;
Gray, Oliver ;
Harrow, Aram W. ;
Kutin, Samuel ;
Linden, Noah ;
Shepherd, Dan ;
Stather, Mark .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2153)
[6]   Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes [J].
Bombin, Hector .
NEW JOURNAL OF PHYSICS, 2015, 17
[7]   Undoped accumulation-mode Si/SiGe quantum dots [J].
Borselli, M. G. ;
Eng, K. ;
Ross, R. S. ;
Hazard, T. M. ;
Holabird, K. S. ;
Huang, B. ;
Kiselev, A. A. ;
Deelman, P. W. ;
Warren, L. D. ;
Milosavljevic, I. ;
Schmitz, A. E. ;
Sokolich, M. ;
Gyure, M. F. ;
Hunter, A. T. .
NANOTECHNOLOGY, 2015, 26 (37)
[8]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226
[9]   Dispersive Readout of a Few-Electron Double Quantum Dot with Fast rf Gate Sensors [J].
Colless, J. I. ;
Mahoney, A. C. ;
Hornibrook, J. M. ;
Doherty, A. C. ;
Lu, H. ;
Gossard, A. C. ;
Reilly, D. J. .
PHYSICAL REVIEW LETTERS, 2013, 110 (04)
[10]  
Ferdous R., 2018, SCI ADV, V4