Bayesian and profile likelihood change point methods for modeling cognitive function over time

被引:72
作者
Hall, CB
Ying, J
Kuo, L
Lipton, RB
机构
[1] Albert Einstein Coll Med, Dept Epidemiol & Social Med, Bronx, NY 10461 USA
[2] Albert Einstein Coll Med, Dept Neurol, Bronx, NY 10461 USA
[3] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
关键词
change points; longitudinal data; mixed models; cognitive aging; Bayesian analyses; Markov chain Monte Carlo;
D O I
10.1016/S0167-9473(02)00148-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Change point models are often used to model longitudinal data. To estimate the change point, Bayesian (Biometrika 62 (1975) 407; Appl. Statist. 41 (1992) 389; Biometrics 51 (1995) 236) or profile likelihood (Statist. Med. 19 (2000) 1555) methods may be used. We compare and contrast the two methods in analyzing longitudinal cognitive data from the Bronx Aging Study. The Bayesian method has advantages over the profile likelihood method in that it does not require all subjects to have the same change point. Caution must be taken regarding sensitivity to choice of prior distribution, identifiability, and goodness of fit. Analyses show that decline in memory precedes diagnosis of dementia by 7.5-8 years, and individual change points are not needed to model heterogeneity across subjects. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:91 / 109
页数:19
相关论文
共 26 条
[1]  
AITKIN M, 1991, J ROY STAT SOC B MET, V53, P111
[2]  
[Anonymous], 1995, CODA CONVERGENCE DIA
[3]   SELECTIVE REMINDING FOR ANALYSIS OF MEMORY AND LEARNING [J].
BUSCHKE, H .
JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR, 1973, 12 (05) :543-550
[4]   HIERARCHICAL BAYESIAN-ANALYSIS OF CHANGEPOINT PROBLEMS [J].
CARLIN, BP ;
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1992, 41 (02) :389-405
[5]   Sampling based approach for one-hit and multi-hit models in quantal bioassay [J].
Chu, HM ;
Kuo, L .
STATISTICS AND COMPUTING, 1997, 7 (03) :183-192
[6]  
DIGGLE PJ, 1994, ANAL LONGITUDIAL DAT
[7]  
GELFAND AE, 1994, J ROY STAT SOC B MET, V56, P501
[8]   ILLUSTRATION OF BAYESIAN-INFERENCE IN NORMAL DATA MODELS USING GIBBS SAMPLING [J].
GELFAND, AE ;
HILLS, SE ;
RACINEPOON, A ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (412) :972-985
[9]  
GORDON B, 1996, MEMORY REMEMBERING F
[10]   SCREENING FOR DEMENTIA BY MEMORY TESTING [J].
GROBER, E ;
BUSCHKE, H ;
CRYSTAL, H ;
BANG, S ;
DRESNER, R .
NEUROLOGY, 1988, 38 (06) :900-903