A short proof of the Marchenko-Pastur theorem

被引:19
作者
Yaskov, Pavel [1 ,2 ]
机构
[1] RAS, VA Steklov Math Inst, Moscow, Russia
[2] Natl Univ Sci & Technol MISIS, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
MATRICES; EIGENVALUES;
D O I
10.1016/j.crma.2015.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Marchenko Pastur theorem for random matrices with i.i.d. columns and a general dependence structure within the columns by a simple modification of the standard Cauchy-Stieltjes resolvent method. (c) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:319 / 322
页数:4
相关论文
共 14 条
[3]  
[Anonymous], 2012, GRADUATE STUDIES MAT, DOI DOI 10.1090/GSM/132.MR2906465
[4]  
[Anonymous], 1985, TEOR VEROYATNOST PRI
[5]  
Bai ZD, 2008, STAT SINICA, V18, P425
[6]   SPECTRAL ANALYSIS OF NETWORKS WITH RANDOM TOPOLOGIES [J].
GRENANDER, U ;
SILVERSTEIN, JW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (02) :499-519
[7]   LP CONVERGENCE OF SUMS OF INDEPENDENT RANDOM-VARIABLES [J].
HALL, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (NOV) :439-446
[9]  
MARCHENKO V. A., 1967, Mat. Sb., V72, P507
[10]   On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution [J].
Pajor, A. ;
Pastur, L. .
STUDIA MATHEMATICA, 2009, 195 (01) :11-29