Plant Hydraulic Trait Covariation: A Global Meta-Analysis to Reduce Degrees of Freedom in Trait-Based Hydrologic Models

被引:14
|
作者
Mursinna, A. Rio [1 ]
McCormick, Erica [1 ]
Van Horn, Katie [2 ]
Sartin, Lisa [3 ]
Matheny, Ashley M. [1 ]
机构
[1] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA
[2] Austin Community Coll, 1218 West Ave, Austin, TX 78701 USA
[3] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA
来源
FORESTS | 2018年 / 9卷 / 08期
基金
美国国家科学基金会;
关键词
hydraulic traits; meta-analysis; hydraulic conductivity; drought tolerance; rooting depth; isohydricity; wood density; plant hydraulics modeling; TURGOR LOSS POINT; WOOD DENSITY; DROUGHT TOLERANCE; ECONOMICS SPECTRUM; TERRESTRIAL CARBON; WATER STORAGE; TRADE-OFFS; MORTALITY; EVAPOTRANSPIRATION; VULNERABILITY;
D O I
10.3390/f9080446
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Current vegetation modeling strategies use broad categorizations of plants to estimate transpiration and biomass functions. A significant source of model error stems from vegetation categorizations that are mostly taxonomical with no basis in plant hydraulic strategy and response to changing environmental conditions. Here, we compile hydraulic traits from 355 species around the world to determine trait covariations in order to represent hydraulic strategies. Simple and stepwise regression analyses demonstrate the interconnectedness of multiple vegetative hydraulic traits, specifically, traits defining hydraulic conductivity and vulnerability to embolism with wood density and isohydricity. Drought sensitivity is strongly (Adjusted R-2 = 0.52, p < 0.02) predicted by a stepwise linear model combining rooting depth, wood density, and isohydricity. Drought tolerance increased with increasing wood density and anisohydric response, but with decreasing rooting depth. The unexpected response to rooting depth may be due to other tradeoffs within the hydraulic system. Rooting depth was able to be predicted from sapwood specific conductivity and the water potential at 50% loss of conductivity. Interestingly, the influences of biome or growth form do not increase the accuracy of the drought tolerance model and were able to be omitted. Multiple regression analysis revealed 3D trait spaces and tradeoff axes along which species' hydraulic strategies can be analyzed. These numerical trait spaces can reduce the necessary input to and parameterization of plant hydraulics modules, while increasing the physical representativeness of such simulations.
引用
收藏
页数:16
相关论文
共 35 条
  • [1] Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis
    Albert, Aurelie
    Auffret, Alistair G.
    Cosyns, Eric
    Cousins, Sara A. O.
    D'hondt, Bram
    Eichberg, Carsten
    Eycott, Amy E.
    Heinken, Thilo
    Hoffmann, Maurice
    Jaroszewicz, Bogdan
    Malo, Juan E.
    Marell, Anders
    Mouissie, Maarten
    Pakeman, Robin J.
    Picard, Melanie
    Plue, Jan
    Poschlod, Peter
    Provoost, Sam
    Schulze, Kiowa Alraune
    Baltzinger, Christophe
    OIKOS, 2015, 124 (09) : 1109 - 1120
  • [2] Regeneration: an overlooked aspect of trait-based plant community assembly models
    Larson, Julie E.
    Funk, Jennifer L.
    JOURNAL OF ECOLOGY, 2016, 104 (05) : 1284 - 1298
  • [3] A global meta-analysis of the relative extent of intraspecific trait variation in plant communities
    Siefert, Andrew
    Violle, Cyrille
    Chalmandrier, Loic
    Albert, Cecile H.
    Taudiere, Adrien
    Fajardo, Alex
    Aarssen, Lonnie W.
    Baraloto, Christopher
    Carlucci, Marcos B.
    Cianciaruso, Marcus V.
    Dantas, Vinicius de L.
    de Bello, Francesco
    Duarte, Leandro D. S.
    Fonseca, Carlos R.
    Freschet, Gregoire T.
    Gaucherand, Stephanie
    Gross, Nicolas
    Hikosaka, Kouki
    Jackson, Benjamin
    Jung, Vincent
    Kamiyama, Chiho
    Katabuchi, Masatoshi
    Kembel, Steven W.
    Kichenin, Emilie
    Kraft, Nathan J. B.
    Lagerstrom, Anna
    Le Bagousse-Pinguet, Yoann
    Li, Yuanzhi
    Mason, Norman
    Messier, Julie
    Nakashizuka, Tohru
    McC Overton, Jacob
    Peltzer, Duane A.
    Perez-Ramos, I. M.
    Pillar, Valerio D.
    Prentice, Honor C.
    Richardson, Sarah
    Sasaki, Takehiro
    Schamp, Brandon S.
    Schoeb, Christian
    Shipley, Bill
    Sundqvist, Maja
    Sykes, Martin T.
    Vandewalle, Marie
    Wardle, David A.
    ECOLOGY LETTERS, 2015, 18 (12) : 1406 - 1419
  • [4] QTL global meta-analysis: are trait determining genes clustered?
    Hanni Salih
    David L Adelson
    BMC Genomics, 10
  • [5] QTL global meta-analysis: are trait determining genes clustered?
    Salih, Hanni
    Adelson, David L.
    BMC GENOMICS, 2009, 10
  • [6] Evolutionary trait-based approaches for predicting future global impacts of plant pathogens in the genus Phytophthora
    Barwell, Louise J.
    Perez-Sierra, Ana
    Henricot, Beatrice
    Harris, Anna
    Burgess, Treena I.
    Hardy, Giles
    Scott, Peter
    Williams, Nari
    Cooke, David E. L.
    Green, Sarah
    Chapman, Daniel S.
    Purse, Bethan V.
    JOURNAL OF APPLIED ECOLOGY, 2021, 58 (04) : 718 - 730
  • [7] Trait-dependent tolerance of bats to urbanization: a global meta-analysis
    Jung, Kirsten
    Threlfall, Caragh Grace
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2018, 285 (1885)
  • [8] A phylogenetically-informed trait-based analysis of range change in the vascular plant flora of Britain
    Powney, Gary D.
    Rapacciuolo, Giovanni
    Preston, Christopher D.
    Purvis, Andy
    Roy, David B.
    BIODIVERSITY AND CONSERVATION, 2014, 23 (01) : 171 - 185
  • [9] A phylogenetically-informed trait-based analysis of range change in the vascular plant flora of Britain
    Gary D. Powney
    Giovanni Rapacciuolo
    Christopher D. Preston
    Andy Purvis
    David B. Roy
    Biodiversity and Conservation, 2014, 23 : 171 - 185
  • [10] Emergent Shapes of Trait-Based Competition Functions from Resource-Based Models: A Gaussian Is Not Normal in Plant Communities
    Falster, Daniel S.
    Kunstler, Georges
    FitzJohn, Richard G.
    Westoby, Mark
    AMERICAN NATURALIST, 2021, 198 (02): : 253 - 267