SINGLE POINT BLOW-UP AND FINAL PROFILE FOR A PERTURBED NONLINEAR HEAT EQUATION WITH A GRADIENT AND A NON-LOCAL TERM

被引:6
作者
Abdelhedi, Bouthaina [1 ]
Zaag, Hatem [2 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Tunisia
[2] Univ Sorbonne Paris Nord, Inst Galilee, Lab Anal Geometrie & Applicat, CNRS,UMR 7539, 99 Ave JB Clement, F-93430 Villetaneuse, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2021年 / 14卷 / 08期
关键词
Blow-up; nonlinear heat equation; gradient term; non-lo cal term; PARABOLIC EQUATION; STABILITY; BEHAVIOR;
D O I
10.3934/dcdss.2021032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider in this paper a perturbation of the standard semilinear heat equation by a term involving the space derivative and a non-lo cal term. In some earlier work [1], we constructed a blow-up solution for that equation, and showed that it blows up (at least) at the origin. We also derived the so called "intermediate blow-up profile". In this paper, we prove the single point blow-up property and determine the final blow-up profile.
引用
收藏
页码:2607 / 2623
页数:17
相关论文
共 29 条
[1]   Construction of a blow-up solution for a perturbed nonlinear heat equation with a gradient and a non-local term [J].
Abdelhedi, Bouthaina ;
Zaag, Hatem .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 272 :1-45
[3]   A RESCALING ALGORITHM FOR THE NUMERICAL-CALCULATION OF BLOWING-UP SOLUTIONS [J].
BERGER, M ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (06) :841-863
[4]   UNIVERSALITY IN BLOW-UP FOR NONLINEAR HEAT-EQUATIONS [J].
BRICMONT, J ;
KUPIAINEN, A .
NONLINEARITY, 1994, 7 (02) :539-575
[5]   SOME BLOWUP RESULTS FOR A NONLINEAR PARABOLIC EQUATION WITH A GRADIENT TERM [J].
CHIPOT, M ;
WEISSLER, FB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (04) :886-907
[6]   Profile of a touch-down solution to a nonlocal MEMS model [J].
Duong, Giao Ky ;
Zaag, Hatem .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (07) :1279-1348
[7]   ON THE BLOWUP OF MULTIDIMENSIONAL SEMILINEAR HEAT-EQUATIONS [J].
FILIPPAS, S ;
LIU, WX .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (03) :313-344
[8]   REFINED ASYMPTOTICS FOR THE BLOWUP OF UT-DELTA-U = UP [J].
FILIPPAS, S ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (07) :821-869
[9]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[10]   REGIONAL BLOW-UP IN A SEMILINEAR HEAT-EQUATION WITH CONVERGENCE TO A HAMILTON-JACOBI EQUATION [J].
GALAKTIONOV, VA ;
VAZQUEZ, JL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (05) :1254-1276