VARIABLE SEPARATION AND ALGEBRAIC-GEOMETRIC SOLUTIONS OF MODIFIED TODA LATTICE EQUATION

被引:1
作者
Luo, Lin [1 ]
Fan, Engui [2 ]
机构
[1] Shanghai Second Polytech Univ, Dept Math, Shanghai 201209, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2010年 / 24卷 / 19期
基金
上海市自然科学基金;
关键词
Modified Toda lattice; Lax pairs; algebraic-geometric solution; Riemann theta function; QUASI-PERIODIC SOLUTIONS; NONLINEAR SCHRODINGER-EQUATIONS; R-MATRIX; HIERARCHY; SYSTEMS;
D O I
10.1142/S0217984910024420
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we derive a modified Toda lattice hierarchy by resorting to the Lenard operator pairs. The hyper-elliptic curve and Abel-Jacobi coordinates are then introduced to linearize the associated flow, from which some algebraic-geometric solutions of the modified Toda lattice are explicitly constructed in terms of Riemann theta functions by using Jacobi inversion technique.
引用
收藏
页码:2041 / 2055
页数:15
相关论文
共 25 条
[1]   Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians [J].
Alber, MS ;
Fedorov, YN .
INVERSE PROBLEMS, 2001, 17 (04) :1017-1042
[2]  
[Anonymous], 1980, THEORY SOLITONS INVE
[3]   Relation between the Kadometsev-Petviashvili equation and the confocal involutive system [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3948-3970
[4]   Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable [J].
Cao, CW ;
Geng, XG ;
Wang, HY .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :621-643
[5]   Quasi-periodic solutions of the coupled nonlinear Schrodinger equations [J].
Christiansen, PL ;
Eilbeck, JC ;
Enolskii, VZ ;
Kostov, NA .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 451 (1943) :685-700
[6]   Variable separation and algebro-geometric solutions of the Gerdjikov-lvanov equation [J].
Dai, HH ;
Fan, EG .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :93-101
[7]   QUASI-PERIODIC SOLUTIONS OF FIELD EQUATION OF CLASSICAL MASSIVE THIRRING MODEL [J].
DATE, E .
PROGRESS OF THEORETICAL PHYSICS, 1978, 59 (01) :265-273
[8]   A hierarchy of nonlinear lattice soliton equations, its integrable coupling systems and infinitely many conservation laws [J].
Ding, Hai-Yong ;
Sun, Ye-Peng ;
Xu, Xi-Xiang .
CHAOS SOLITONS & FRACTALS, 2006, 30 (01) :227-234
[9]  
Dubrovin BA., 1975, Funktsional. Anal. i Prilozhen, V9, P41
[10]   Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii's breaking soliton equation in (2+1) dimensions [J].
Fan, Engui ;
Hon, Y. C. .
PHYSICAL REVIEW E, 2008, 78 (03)