Comment on "Unbiased solar H2 production with current density up to 23 mA cm-2 by Swiss-cheese black Si coupled with wastewater bioanode" by L. Lu, W. Vakki, J. A. Aguiar, C. Xiao, K. Hurst, M. Fairchild, X. Chen, F. Yang, J. Gu and Z. J. Ren, Energy Environ. Sci., 2019, 12, 1088

被引:5
作者
Lu, Lu [1 ,2 ]
Gu, Jing [3 ]
Ren, Zhiyong Jason [1 ,2 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
[3] San Diego State Univ, Dept Chem & Biochem, 5500 Campanile Dr, San Diego, CA 92182 USA
关键词
HYDROGEN CONVERSION EFFICIENCY; MICROBIAL ELECTROLYSIS CELLS; PHOTOCATHODE; DRIVEN; DEVICE;
D O I
10.1039/c9ee02592h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A hybrid microbial photoelectrochemical (MPEC) system recently reported by Lu et al. achieved a high photocurrent density of up to 23 mA cm(-2) on the basis of area of a small photocathode matched to a larger bioanode. This current density number followed the tradition of photoelectrochemical (PEC) systems but didn't report performance of the total system based on the cross-sectional area of the reactor, as preferred by researchers working on microbial electrochemical (MEC) systems. The overall current supplied by the bioanodes oxidizing organic matter in wastewater was 1.3-1.9 mA, which corresponded to 0.18-0.27 mA cm(-2) based on cross-sectional area or 44-69 A m(-3) based on catholyte volume. It is important to recognize that the performance of the system can be limited by either the electrodes or reactor configuration, so data presentations based on multi-parameters are necessary to advance similar interdisciplinary research.
引用
收藏
页码:3412 / 3414
页数:3
相关论文
共 17 条
[11]   Microbial electrolysis cells for waste biorefinery: A state of the art review [J].
Lu, Lu ;
Ren, Zhiyong Jason .
BIORESOURCE TECHNOLOGY, 2016, 215 :254-264
[12]   Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts [J].
Reece, Steven Y. ;
Hamel, Jonathan A. ;
Sung, Kimberly ;
Jarvi, Thomas D. ;
Esswein, Arthur J. ;
Pijpers, Joep J. H. ;
Nocera, Daniel G. .
SCIENCE, 2011, 334 (6056) :645-648
[13]   Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling [J].
Shi, Xinjian ;
Jeong, Hokyeong ;
Oh, Seung Jae ;
Ma, Ming ;
Zhang, Kan ;
Kwon, Jeong ;
Choi, In Taek ;
Choi, Il Yong ;
Kim, Hwan Kyu ;
Kim, Jong Kyu ;
Park, Jong Hyeok .
NATURE COMMUNICATIONS, 2016, 7
[14]   Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device [J].
Shi, Xinjian ;
Zhang, Kan ;
Shin, Kahee ;
Ma, Ming ;
Kwon, Jeong ;
Choi, In Taek ;
Kim, Jung Kyu ;
Kim, Hwan Kyu ;
Wang, Dong Hwan ;
Park, Jong Hyeok .
NANO ENERGY, 2015, 13 :182-191
[15]   A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell [J].
Wan, Li-Li ;
Li, Xiao-Jing ;
Zang, Guo-Long ;
Wang, Xin ;
Zhang, Yue-Yong ;
Zhou, Qi-Xing .
RSC ADVANCES, 2015, 5 (100) :82276-82281
[16]   Self-Biased Solar-Microbial Device for Sustainable Hydrogen Generation [J].
Wang, Hanyu ;
Qian, Fang ;
Wang, Gongming ;
Jiao, Yongqin ;
He, Zhen ;
Li, Yat .
ACS NANO, 2013, 7 (10) :8728-8735
[17]   Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures [J].
Young, James L. ;
Steiner, Myles A. ;
Doescher, Henning ;
France, Ryan M. ;
Turner, John A. ;
Deutsch, Todd G. .
NATURE ENERGY, 2017, 2 (04)