Development of Automatic Crack Growth Simulation Program Based on Finite Element Analysis
被引:6
作者:
Lee, Gi-Bum
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ Sci & Technol, Dept Mech Syst Design Engn, 232 Gongneung Ro, Seoul 01811, South KoreaSeoul Natl Univ Sci & Technol, Dept Mech Syst Design Engn, 232 Gongneung Ro, Seoul 01811, South Korea
Lee, Gi-Bum
[1
]
Park, Seung-Hyun
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, South KoreaSeoul Natl Univ Sci & Technol, Dept Mech Syst Design Engn, 232 Gongneung Ro, Seoul 01811, South Korea
Park, Seung-Hyun
[2
]
Jang, Youn-Young
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Nucl Safety, Dept Mech & Mat Engn, 62 Gwahak Ro, Daejeon 34142, South KoreaSeoul Natl Univ Sci & Technol, Dept Mech Syst Design Engn, 232 Gongneung Ro, Seoul 01811, South Korea
Jang, Youn-Young
[3
]
Huh, Nam-Su
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ Sci & Technol, Dept Mech Syst Design Engn, 232 Gongneung Ro, Seoul 01811, South KoreaSeoul Natl Univ Sci & Technol, Dept Mech Syst Design Engn, 232 Gongneung Ro, Seoul 01811, South Korea
Huh, Nam-Su
[1
]
论文数: 引用数:
h-index:
机构:
Park, Sung-Hoon
[4
]
论文数: 引用数:
h-index:
机构:
Park, Noh-Hwan
[4
]
论文数: 引用数:
h-index:
机构:
Park, Jun
[4
]
机构:
[1] Seoul Natl Univ Sci & Technol, Dept Mech Syst Design Engn, 232 Gongneung Ro, Seoul 01811, South Korea
[2] Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, South Korea
[3] Korea Inst Nucl Safety, Dept Mech & Mat Engn, 62 Gwahak Ro, Daejeon 34142, South Korea
[4] VENG Co Ltd, 3-10,Seongnam Daero 331 Beon Gil, Seongnam Si 13558, South Korea
Featured Application Crack Growth Assessment for Fracture Mechanics. A crack growth simulation program based on the advanced iterative-finite element method (AI-FEM) was developed to predict realistic crack growth of structures. The developed program was suggested to calculate the exact stress intensity factor for arbitrary structures by regenerating the crack tip mesh as the crack grows. The main advantages of the developed program are to estimate each different crack growths along the crack tip line and to simulate the cracking transition from a surface crack to a through-wall crack under a complex stress field. For these purposes, the sensitivity analyses were performed for various influence variables on stress intensity factors, such as element types and crack dimensions. Based on the results of sensitivity analyses, the appropriate criteria for crack tip modeling to be used in AI-FEM were suggested to calculate sufficient converged SIF. The program developed in this research was validated through stress corrosion crack growth and natural crack growth examples including cracking transition, and it was confirmed that the program simulates crack growth well and has reasonable methods for cracking transition.
引用
收藏
页数:18
相关论文
共 24 条
[1]
Anderson T. L., 2003, Fracture Mechanics: Fundamentals and Applications