This paper proposes a new scheme for improving the classification performance of inverse synthetic aperture radar (ISAR) images. The proposed scheme utilizes the trace transform to gather abundant information from an ISAR image, regardless of the spatial distribution of the target response in the ISAR image. In simulations using ISAR images with various spatial distributions, the proposed scheme substantially improved the classification performance compared with existing methods, which are highly vulnerable to spatial variation.
机构:
Karunya Inst Technol & Sci, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, IndiaKarunya Inst Technol & Sci, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India
Anitha, J.
Sophia, P. Eben
论文数: 0引用数: 0
h-index: 0
机构:
Karpagam Univ, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, IndiaKarunya Inst Technol & Sci, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India
Sophia, P. Eben
Le Hoang Son
论文数: 0引用数: 0
h-index: 0
机构:
Ton Duc Thang Univ, Div Data Sci, Ho Chi Minh City 700000, Vietnam
Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City 700000, VietnamKarunya Inst Technol & Sci, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India
Le Hoang Son
de Albuquerque, Victor Hugo C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fortaleza, Programa Posgrad Informat Aplicada, Fortaleza, Ceara, BrazilKarunya Inst Technol & Sci, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India