Mechanism of SiOx particles formation during CVD graphene growth on Cu substrates

被引:21
作者
Ge, Xiaoming [1 ,2 ,3 ]
Zhang, Yanhui [1 ,2 ]
Chen, Lingxiu [1 ,2 ,3 ]
Zheng, Yonghui [1 ,3 ]
Chen, Zhiying [1 ,2 ]
Liang, Yijian [1 ,2 ,3 ]
Hu, Shike [1 ,2 ,3 ]
Li, Jing [1 ,2 ,3 ]
Sui, Yanping [1 ,2 ]
Yu, Guanghui [1 ,2 ]
Jin, Zhi [4 ]
Liu, Xinyu [4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] CAS Ctr Excellence Superconducting Elect, Shanghai 200050, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Microelect, Microwave Devices & Integrated Circuits Dept, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
CHEMICAL-VAPOR-DEPOSITION; ELECTRONIC TRANSPORT; HIGH-QUALITY; COPPER; DOMAINS; RESISTANCE; OXIDATION; HYDROGEN; FILMS;
D O I
10.1016/j.carbon.2018.08.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For graphene grown on Cu substrate via chemical vapor deposition (CVD), numerous nanometer particles are distributed along the graphene grain boundaries or evenly on the circumjacent substrate surface. The particles form new nucleation centers of graphene or destroy the graphene membrane during growth. In order to clarify the origin of particles, the formation process was studied by etching graphene at high temperature with different atmospheric pressures. We demonstrated that the formation of the particles is closely related to the competition of hydrogen and oxygen during growth; we also confirmed that the main component of particles was SiOx by energy dispersive spectrometry (EDS) measurement in transmission electron microscopy (TEM). Finally, on the basis of the formation mechanism, we proposed efficient approaches to reduce SiOx particles that improve the quality of graphene during actual CVD preparation process. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 37 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[3]   Understanding and Controlling Cu-Catalyzed Graphene Nucleation: The Role of Impurities, Roughness, and Oxygen Scavenging [J].
Braeuninger-Weimer, Philipp ;
Brennan, Barry ;
Pollard, Andrew J. ;
Hofmann, Stephan .
CHEMISTRY OF MATERIALS, 2016, 28 (24) :8905-8915
[4]   Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene [J].
Brownson, Dale A. C. ;
Varey, Sarah A. ;
Hussain, Fiazal ;
Haigh, Sarah J. ;
Banks, Craig E. .
NANOSCALE, 2014, 6 (03) :1607-1621
[5]   Graphene CVD: Interplay Between Growth and Etching on Morphology and Stacking by Hydrogen and Oxidizing Impurities [J].
Choubak, Saman ;
Levesque, Pierre L. ;
Gaufres, Etienne ;
Biron, Maxime ;
Desjardins, Patrick ;
Martel, Richard .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (37) :21532-21540
[6]   No Graphene Etching in Purified Hydrogen [J].
Choubak, Saman ;
Biron, Maxime ;
Levesque, Pierre L. ;
Martel, Richard ;
Desjardins, Patrick .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (07) :1100-1103
[7]   Charge Transport in Polycrystalline Graphene: Challenges and Opportunities [J].
Cummings, Aron W. ;
Dinh Loc Duong ;
Van Luan Nguyen ;
Dinh Van Tuan ;
Kotakoski, Jani ;
Barrios Vargas, Jose Eduardo ;
Lee, Young Hee ;
Roche, Stephan .
ADVANCED MATERIALS, 2014, 26 (30) :5079-5094
[8]   Crystallographic Tailoring of Graphene by Nonmetal SiOx Nanoparticles [J].
Gao, Libo ;
Ren, Wencai ;
Liu, Bilu ;
Wu, Zhong-Shuai ;
Jiang, Chuanbin ;
Cheng, Hui-Ming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (39) :13934-+
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Controlled assembly of SiOx nanoparticles in graphene [J].
Geng, Dechao ;
Wang, Huaping ;
Yang, Jie ;
Yu, Gui .
MATERIALS HORIZONS, 2016, 3 (06) :568-574